On the domain structure of ferrite-garnet films with complex anisotropy under quasi-stationary magnetization reversal
- Autores: Matyunin A.V.1, Nikoladze G.M.1, Polyakov P.A.1
-
Afiliações:
- Lomonosov Moscow State University
- Edição: Volume 88, Nº 11 (2024)
- Páginas: 1710–1714
- Seção: Electromagnetic field and materials (fundamental physical research)
- URL: https://cardiosomatics.ru/0367-6765/article/view/682557
- DOI: https://doi.org/10.31857/S0367676524110072
- EDN: https://elibrary.ru/FLQHAL
- ID: 682557
Citar
Resumo
We presented the results obtained in the experimental and theoretical analysis of quasi-stationary magnetization reversal of ferrite-garnet films with complex anisotropy. Using a magneto-optical setup based on the Faraday effect, the conditions under which it is possible to reduce the area of occurrence of the domain structure are revealed, and the presence of destruction of the state of homogeneous magnetization of the magnetic film in four narrow regions located relative to each other at right angles is also established. A theory that is in good agreement with the experimental results is proposed.
Sobre autores
A. Matyunin
Lomonosov Moscow State University
Autor responsável pela correspondência
Email: physphak@mail.ru
Chair of General Physics, Faculty of Physics
Rússia, Moscow, 119991G. Nikoladze
Lomonosov Moscow State University
Email: physphak@mail.ru
Chair of General Physics, Faculty of Physics
Rússia, Moscow, 119991P. Polyakov
Lomonosov Moscow State University
Email: physphak@mail.ru
Chair of General Physics, Faculty of Physics
Rússia, Moscow, 119991Bibliografia
- Demirci E. // J. Supercond. Nov. Magn. 2020. V. 33. P. 3835.
- Шевцов В.С., Каминская Т.П., Поляков О.П. и др.// Изв. РАН. Сер. физ. 2023. Т. 87. № 11. C. 1662; Shevtsov V.S., Kaminskaya T.P., Polyakov O.P. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 11. P. 1719.
- Sreevidya P.V., Khan Jakeer, Barshilia Harish C. et al. // JMMM. 2018. V. 448. P. 298.
- Jun Zhao Chong, Li Min, Li Jian-Wei et al. // JMMM. 2014. V. 368. P. 328.
- Шевцов В.С., Амеличев В.В., Васильев Д.В. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. C. 1247; Shevtsov V.S., Amelichev V.V., Vasilyev D.V. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1233.
- Singh Sadhana, Kumar Pawan, Gupta Ajay et. al. // JMMM. 2020. V. 513. Art. No. 167186.
- Поляков О.П., Касаткин С.И, Амеличев В.В. и др. // Изв. РАН. Сер. физ. 2021. Т. 85. № 11. C. 1554; Polyakov O.P., Kasatkin S.I., Amelichev V.V. et al. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 11. P. 1217.
- Bhatti Sabpreet, Sbiaa Rachid, Hirohata Atsufumi et al. // Today. 2017. V. 20. No. 9. P. 530.
- Матюнин А.В., Николадзе Г.М., Поляков П.А. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1239; Matyunin A.V., Nikoladze G.M., Polyakov P.A. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 9. P. 1026.
- Колотов О.С., Матюнин А.В., Поляков П.А. // ФТТ. 2017. Т. 59. № 10. C. 1892; Kolotov O.S., Matyunin A.V., Polyakov P.A. // Phys. Solid State. 2017. V. 59. No. 10. P. 1913.
Arquivos suplementares
