Optical computation of the Laplace operator at normal incidence using a multilayer metal-dielectric structure
- Autores: Kashapov A.I.1,2, Bezus E.A.1,2, Bykov D.A.1,2, Doskolovich L.L.1,2
-
Afiliações:
- Image Processing Systems Institute, National Research Centre «Kurchatov Institute»
- Samara National Research University
- Edição: Volume 89, Nº 1 (2025)
- Páginas: 13-17
- Seção: Wave Phenomena: Physics and Applications
- URL: https://cardiosomatics.ru/0367-6765/article/view/683809
- DOI: https://doi.org/10.31857/S0367676525010026
- EDN: https://elibrary.ru/DCJWJG
- ID: 683809
Citar
Resumo
We theoretically and numerically investigate the optical implementation of the second-order spatial differentiation operation using a layered metal-dielectric structure at normal light beam incidence. Numerical simulation results confirm the theoretical results and show the possibility of ‘optical calculation of the Laplace operator with high quality.
Palavras-chave
Sobre autores
A. Kashapov
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research University
Email: ar.kashapov@gmail.com
Samara, Russia; Samara, Russia
E. Bezus
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
D. Bykov
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
L. Doskolovich
Image Processing Systems Institute, National Research Centre «Kurchatov Institute»; Samara National Research UniversitySamara, Russia; Samara, Russia
Bibliografia
- Bykov D.A., Doskolovich L.L., Bezus E.A., Soifer V.A. // Opt. Express. 2014. V. 22. No. 21. P. 25084.
- Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Opt. Express. 2023. V. 31. No. 10. P. 17050.
- Zhou Y., Zheng H., Kravchenko I.I., Valentine J. // Nature Photon. 2020. V. 14. P. 316.
- Tu Y., Liang Y., Zhu X. et al. // Opt. Commun. 2023. V. 549. Art. No. 129935.
- Guo C., Xiao M., Minkov M. et al. // Optica. 2018. V. 5. No. 3. P. 251.
- Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // Comp. Opt. 2023. V. 47. No. 6. P. 845.
- Кашапов А.И., Безус Е.А., Быков Д.А., Досколович Л.Л. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 19
- Kashapov A.I., Bezus E.A., Bykov D.A., Doskolovich L.L. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 1. P. 13.
- Soshnikov D.V., Doskolovich L.L., Byzov E.V. et al. // Comp. Opt. 2023. V. 47. No. 5. P. 691.
- Wesemann L., Panchenko E., Singh K. et al. // APL Photonics. 2019. V. 4. No. 10. Art. No. 100801.
- Pan D., Wan L., Ouyang M. et al. // Photon. Res. 2021. V. 9. No. 9. P. 1758.
- Kashapov A.I., Doskolovich L.L., Bezus E.A. et al. // J. Optics. 2021. V. 23. No. 2. Art. No. 023501.
- Doskolovich L.L., Kashapov A.I., Bezus E.A. et al. // Photon. Nanostruct. 2022. V. 52. Art. No. 101069.
- https://refractiveindex.info/
- Johnson P.B., Christy R.W. // Phys. Rev. B. 1972. V. 6. No. 12. P. 4370.
- Moharam M.G., Pommet D.A., Grann E.B. Gaylord T.K. // J. Opt. Soc. Amer. A. 1995. V. 12. P. 1077.
Arquivos suplementares
