Multiparameter quantum metrology with bright solitons

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

We consider the problem of quantum metrology with simultaneous measurement of several phase parameters in the framework of current tendencies of development of alternative navigation. The fundamental limits of linear and nonlinear metrology are studied. The effect of losses on the accuracy of quantum metrology for several parameters is revealed. A realistic scenario for preparing three-mode NooN states using atomic bright solitons is proposed.

Texto integral

Acesso é fechado

Sobre autores

A. Alodjants

ITMO National Research University; Southern Ural State University

Autor responsável pela correspondência
Email: alexander_ap@list.ru
Rússia, Saint Petersburg; Chelyabinsk

D. Tsarev

ITMO National Research University; Southern Ural State University

Email: alexander_ap@list.ru
Rússia, Saint Petersburg; Chelyabinsk

S. Osipov

Cherepovets State University

Email: alexander_ap@list.ru
Rússia, Cherepovets

M. Podoshvedov

Southern Ural State University; Kazan National Research Technical University

Email: alexander_ap@list.ru
Rússia, Chelyabinsk; Kazan

S. Kulik

Southern Ural State University; Lomonosov Moscow State University

Email: alexander_ap@list.ru
Rússia, Chelyabinsk; Moscow

Bibliografia

  1. Pezzé L., Smerzi A., Oberthaler M.K. et al. // Rev. Mod. Phys. 2018. V. 90. Art. No. 035005.
  2. Degen C.L., Reinhard F., Cappellaro P. // Rev. Mod. Phys. 2017. V. 89. Art. No. 035002.
  3. Crawford S.E., Shugayev R.A., Paudel H.P. et al. // Adv. Quantum Technol. 2021. V. 4. Art. No. 2100049.
  4. Bongs K., Holynski M., Vovrosh J. et al. // Nature Rev. Phys. 2019. V. 1. P. 731.
  5. Abend S., Allard B., Arnold A.S. et al. // AVS Quantum Sci. 2023. V. 5. No. 1. Art. No. 019201.
  6. Ludlow A.D., Boyd M.M., Ye J. et al. // Rev. Mod. Phys. 2015. V. 87 P. 2.
  7. Mitchell M.W., Alvarez S.P. // Rev. Mod. Phys. 2020. V. 92. No. 2. Art. No. 021001.
  8. Templier S., Cheiney P., D’Armagnac De Castanet Q. // Sci. Advances. 2022. V. 8. Art. No. eadd3854.
  9. Bloch I. // Nature Physics. 2005. V. 1. No. 1. P. 23.
  10. Сазонов С.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 6. С. 766; Sazonov S. V. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 6. P. 643.
  11. Afanasiev A.E., Kalmykov A.S., Kirtaev R.V. et al. // Opt. Laser Tech. 2022. V. 148. Art. No. 107698.
  12. Sewell R.J., Dingjan J., Baumgärtner F. et al. // J. Physics B. 2010. V. 43. No. 5. Art. No. 051003.
  13. Царёв Д.В., Нго Т.В., Алоджанц А.П. // Изв. РАН. Сер. физ. 2020. Т. 84. № 3. С. 332; Tsarev D.V., Ngo V.T., Alodjants A.P. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 3. P. 257.
  14. Сазонов С.В., Устинов Н.В. // Изв. РАН. Сер. физ. 2020. Т. 84. № 1. С. 11; Sazonov S.V., Ustinov N.V. // Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 1. P. 5.
  15. Touboul P., Métris G., Rodrigues M. et al. // Phys. Rev. Lett. 2022. V. 129. No. 12. Art. No. 121102.
  16. Anglin J.R., Vardi A. // Phys. Rev. A. 2001. V. 64. No. 5. Art. No. 013605.
  17. Калинович А.А., Захарова И.Г. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1701; Kalinovich A.A., Zakharova I.G. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1785.
  18. Joo J., Park K., Jeong H. et al. // Phys. Rev. A. 2012. V. 86. Art. No. 043828.
  19. Dowling L.P. // Cont. Phys. 2008. V. 49. P. 125.
  20. Birrittella R.J., Alsing P.M., Gerry C. C. // AVS Quantum Sci. 2021. V. 3. Art. No. 014701.
  21. Tsarev D.V., Arakelian S.M., Chuang Y.-L. et al. // Opt. Express. 2018. V. 26. Art. No. 19583.
  22. Maldonado-Mundo D., Luis A. // Phys. Rev. A. 2009. V. 80. Art. No. 063811.
  23. Napolitano M., Mitchell M.W. // New J. Phys. 2010. V. 12. Art. No. 09301.
  24. Tsarev D.V., Ngo T.V., Lee R.-K., Alodjants A.P. // New J. Phys. 2019. V. 21 Art. No. 083041.
  25. Alodjants A.P., Tsarev D.V., Ngo T.V., Lee R.-K. // Phys. Rev. A. 2022. V. 105. Art. No. 012606.
  26. Liu J., Lu X.M., Sun Z., Wang X. // J. Phys. A. 2016. V. 49. Art. No. 115302.
  27. Gessner M., Pezzé L., Smerzi A. // Phys. Rev. Lett. 2018. V. 121. Art. No. 130503.
  28. Humphreys P.C., Barbieri M., Datta A., Walm-sley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  29. Demkowicz-Dobrzanski R., Dorner U., Smith B.J. et al. // Phys. Rev. A. 2009. V. 80. Art. No. 013825.
  30. Raghavan S., Agrawan G.P. // J. Mod. Optics. 2000. V. 47. P. 1155.
  31. Tsarev D., Alodjants A., Lee R.-K. // New J. Physics. 2020. V. 22. No. 11. Art. No. 113016.
  32. Tsarev D., Osipov S., Lee R.-K. et al. // Phys. Rev. A. 2023. V. 108. Art. No. 062612.
  33. Dorner U., Demkowicz-Dobrzanski R., Smith B. J. et al. // Phys. Rev. Lett. 2009. V. 102. Art. No. 040403.
  34. Humphreys P.C., Barbieri M., Datta A., Walmsley I.A. // Phys. Rev. Lett. 2013. V. 111. Art. No. 070403.
  35. Khaykovich L., Schreck F., Ferrari G. et al. // Science. 2002. V. 296. P. 1290.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Scheme of multiparameter quantum metrology with solitons. |ψin> is a trial multiparticle state of quantum solitons, which evolves with the accumulation of phases φj containing information about the measured parameters χj (j = 1, ..., d). The operator denotes the linear transformations that allow the construction of a procedure for measuring and estimating the unknown parameters. Details are given in the text

Baixar (59KB)
3. Fig. 2. TMSDK ground state distributions at (a) Λ = 0; (b) Λ = Λcr = 3.34087496; (c) Λ = 3.345. N = 40

Baixar (124KB)
4. Fig. 3. Dependence of the ultimate measurement error σ(1) on the control parameter Λ in the vicinity of the critical point Λ = Λcr for linear quantum metrology using solitons. The particle loss is characterised by the deviation of the FDP transparency coefficient η from unity. The number of particles is N = 40. The limit linear quantum metrology is characterised by the SCP and CIP, which are indicated by the dashed lines. The black dotted line denotes the accuracy of linear metrology achieved using optimal states, while the thin solid black line corresponds to the PG σPG = 1 / N

Baixar (102KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024