Impact of the meteorological storm in the Moscow region in May 2017 on variations in upper atmosphere parameters

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A numerical simulation of atmospheric wave propagation ahead of a strong pressure spike during a squall in Moscow on May 29, 2017, was performed using a three-dimensional version of the high-resolution nonlinear numerical model AtmoSym. The meteorological source was specified based on experimental observations of a network of 4 microbarographs located in the Moscow region. Wave perturbations in the upper atmosphere caused by the generation of internal gravity waves by the meteorological source were estimated.

Texto integral

Acesso é fechado

Sobre autores

Yu. Kurdyaeva

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: yakurdyaeva@gmail.com
Rússia, Kaliningrad

O. Borchevkina

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: yakurdyaeva@gmail.com
Rússia, Kaliningrad

E. Golikova

Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences

Email: yakurdyaeva@gmail.com
Rússia, Moscow

I. Karpov

Kaliningrad Branch of the Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of the Russian Academy of Sciences

Email: yakurdyaeva@gmail.com
Rússia, Kaliningrad

Bibliografia

  1. Zettergren M.D., Snively J.B. // J. Geophys. Res. Space Phys. 2015. V. 120. No. 9. P. 8002.
  2. Alexander M.J., Geller M., McLandress C. et al. // Q. J. R. Meteorol. Soc. 2010. V. 136. No. 650. P. 1103.
  3. Lilienthal F., Yiğit E., Samtleben N., Jacobi C. // Front. Astron. Space Sci. 2020. V. 7. Art. No. 588956.
  4. Plougonven R., Zhang F. // Rev. Geophys. 2014. V. 52. No. 1. P. 33.
  5. Yiğit E., Medvedev A.S. // Adv. Space Res. 2015. V. 55. No. 4. P. 983.
  6. Fritts D.C., Alexander M.J. // Rev. Geophys. 2003. V. 41. Art. No. 1.
  7. Гаврилов Н.М., Коваль А.В. // Изв. РАН. Физ. атм. и океана. 2013. Т. 49. № 3. С. 271; Gavrilov N.M., Koval A.V. // Izv. Atmos. Ocean. Phys. 2013. V. 49. No. 3. P. 244.
  8. Мингалев И.В., Орлов К.Г., Федотова Е.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 434; Mingalev I.V., Orlov K.G., Fedotova E.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 354.
  9. Richter J.H., Sassi F., Garcia R.R. // J. Atmos. Sci. 2010. V. 67. No. 1. P. 136.
  10. Hines C.O. The upper atmosphere in motion: a selection of papers with annotation. American Geophysical Union, 1974.
  11. Akmaev R.A., Yudin V.A., Ortland D.A. // Ann. Geophys. 1997. V. 15. No. 9. P. 1187.
  12. Gavrilov N.M. // Ann. Geophys. 1997. V. 15. No. 12. P. 1570.
  13. Курдяева Ю.А., Кшевецкий С.П., Борчевкина О.П., Карпов М.И. // Геомагн. и аэроном. 2022. Т. 62. № 4. С. 537; Kurdyaeva Y.A., Kshevetsky S.P., Borchevkina O.P., Karpov M.I. // Geomagn. Aeronomy. 2022. V. 62. No. 4. P. 453.
  14. Borchevkina O.P., Kurdyaeva Y.A., Karpov I.V. et al. // Atmosphere. 2021. V. 12. Art. No. 11.
  15. Gavrilov N.M., Kshevetskii S.P. // Earth, Planets Space. 2014. V. 66. No. 1. P. 88.
  16. Курдяева Ю.А., Кшевецкий С.П., Гаврилов Н.М., Голикова Е.В. // Сиб. журн. вычисл. матем. 2017. Т. 20. № 4. С. 393; Kurdyaeva Y.A., Kshevetskii S.P., Gavrilov N.M., Golikova E.V. // Numer. Analys. Appl. 2017. V. 10. No. 4. P. 324.
  17. Кшевецкий С.П., Курдяева Ю.А., Куличков С.Н. // Изв. РАН. Физ. атм. и океана. 2022. Т. 58. № 1. С. 37; Kshevetskii S.P., Kurdyaeva Y.A., Kulichkov S.N. // Izv. Atmos. Ocean. Phys. 2022. V. 58. No. 1. P. 30.
  18. Kshevetskii S., Borchevkina O., Kurdyaeva Y. et al. // Pure Appl. Geophys. 2020. V. 177. No. 11. P. 5567.
  19. Кшевецкий С.П. // Журн. вычисл. матем. и мат. физики. 2001. Т. 41. № 2. С. 295; Kshevetskii S.P. // Comput. Math. Math. Phys. 2001. V. 41. No. 2. P. 273.
  20. Kshevetskii S.P. // Nonlinear. Proc. Geophys. 2001. V. 41. P. 37.
  21. Кшевецкий С.П. // Журн. вычисл. матем. и мат. физики. 2001. Т. 41. № 2. С. 1870; Kshevetskii S.P. // Comp. Math. Math. Phys. 2001. V. 41. P. 1777.
  22. Karpov I.V., Kshevetskii S.P. // J. Atmos. Sol.-Terr. Phys. 2017. V. 164. P. 89.
  23. Курдяева Ю.А., Кшевецкий С.П. // Изв. РАН. Сер. физ. 2022. Т. 86. № 3. С. 423; Kurdyaeva Y.A., Kshevetskii S.P. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 3. P. 343.
  24. Nigussie M., Moldwin M., Yizengaw E. // Atmosphere. 2022. V. 13. No. 9. P. 1414.
  25. John S.R., Kumar K.K. // Clim. Dynam. 2012. V. 39. P. 1489.
  26. Hindley N.P., Wright C.J., Smith N.D., Mitchell N.J. // Atmos. Chem. Phys. 2015. V. 15. P. 7797.
  27. Гаврилов Н.М. // Изв. АН СССР. Физ. атм. и океана. 1974. Т. 10. № 1. С. 83.
  28. Намгаладзе А.А., Кореньков Ю.Н., Клименко В.В. и др. // Геомагн. и аэроном. 1990. Т. 30. № 4. С. 612.
  29. Klimenko M.V., Klimenko V.V., Bessarab F.S. et al. // J. Space Weather Space Clim. 2019. V. 9. Art. No. A39.
  30. Bessarab F.S., Sukhodolov T.V., Klimenko M.V. // Adv. Space Res. 2021. V. 67. No. 1. P. 133.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Atmospheric pressure variations obtained at the microbarograph network of the Obukhov Institute of Atmospheric Physics of the Russian Academy of Sciences during the passage of the meteorological front over the Moscow region on 29 May 2017

Baixar (262KB)
3. Fig. 2. Wave additive distribution (cross-section by OY plane) to temperature, K, for time t = 1 h (a) and 2 h (b)

Baixar (317KB)
4. Fig. 3. Frequency characteristics of wave temperature fluctuations at different heights at different points (horizontal coordinate - x; vertical coordinate - z). The source centre is defined at the lower boundary near the point x = 0 km

Baixar (453KB)
5. Fig. 4. Wavelet analysis of the vertical structure of temperature perturbations obtained in numerical calculations to extract the characteristics of waves in the thermosphere. The source centre is defined at the lower boundary near the point x = 0 km

Baixar (329KB)
6. Fig. 5. Heat flux created by atmospheric wave propagation into the upper atmosphere

Baixar (91KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024