Compensation of magnetostatic interaction between magnetic layers in a spin tunnel element

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A method is proposed to significantly reduce the influence of the magnetostatic magnetic field of a fixed magnetic field on the free layer of a spin tunnel element. The method is based on the use of a free layer, the size of which exceeds the fixed layer, due to which a significant reduction in the influence of the magnetostatic field is achieved.

Sobre autores

D. Vasilyev

Scientific-manufacturing complex “Technological Centre”

Autor responsável pela correspondência
Email: D.Vasilyev@tcen.ru
Rússia, Moscow, 124498

O. Polyakov

V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences; S
Faculty of Physics, Lomonosov Moscow State University

Email: D.Vasilyev@tcen.ru

Faculty of Physics

Rússia, Moscow, 117997; Moscow, 119991

P. Polyakov

Lomonosov Moscow State University

Email: D.Vasilyev@tcen.ru

Faculty of Physics

Rússia, Moscow, 119991

V. Amelichev

Scientific-manufacturing complex “Technological Centre”

Email: D.Vasilyev@tcen.ru
Rússia, Moscow, 124498

S. Kasatkin

V. A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences

Email: D.Vasilyev@tcen.ru
Rússia, Moscow, 117997

D. Kostyuk

Scientific-manufacturing complex “Technological Centre”

Email: D.Vasilyev@tcen.ru
Rússia, Moscow, 124498

Bibliografia

  1. Ферт А. // УФН. 2008. Т. 178. № 12. С. 1336; Fert A. // Phys. Usp. 2008. V. 51. No. 12. P. 1336.
  2. Kim S.N., Cho J.W., Lim S.H. // Sci. Reports. 2019. V. 9. P. 1617.
  3. Ferdaus F., Talukder B.M.S.B., Sadi M., Rahman M.T. // Proc. 22nd Int. Symp. Quality Electronic Design (ISQED). 2021. P. 510.
  4. Girard P., Cheng Y., Virazel A. et al. // Proc. IEEE. 2021. V. 109. P. 149.
  5. Трушин А.С., Кичин Г.А., Звездин К.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 1. С. 105; Trushin A.S., Kichin G.A., Zvezdin K.A. // Bull. Russ. Acad. Sci. Ser. Phys. 2023. V. 87. No. 1. P. 88.
  6. Yang C.L., Lai C.H. // Sci. Reports. 2021. V. 11. Art. No. 15214.
  7. Inomata K., Nozaki T., Tezuka N., Sugimoto S. // Appl. Phys. Lett. 2002. V. 81. P. 310.
  8. Franco F., Silva M., Cardoso S., Freitas P.P. // Appl. Phys. Lett. 2021. V. 118. Art. No. 072401.
  9. Поляков О.П., Поляков П.А., Васильев Д.В. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 11. С. 1653; Polyakov O.P., Polyakov P.A., Vasillyev D.V. et al. // Bull. Russ. Acad. Sci. Ser. Phys. 2023. V. 87. No. 11. P. 1711.
  10. Шевцов В.С., Амеличев В.В., Васильев Д.В. // Изв. РАН. Сер. физ. 2022. Т. 86. № 9. С. 1247; Shevtsov V.S., Amelichev V.V., Vasilyev D.V. // Bull. Russ. Acad. Sci. Ser. Phys. 2022. V. 86. No. 9. P. 1033.
  11. Bandiera S., Sousa R.C., Dahmane Y. et al. // IEEE Magn. Lett. 2010. V. 1. Art. No. 3000204.
  12. Юсипова Ю.А., Скиданов В.А. // Изв. РАН. Сер. физ. 2023. Т. 87. № 3. С. 359; Iusipova Iu.A., Skidanov V.A. // Bull. Russ. Acad. Sci. Ser. Phys. 2023. V. 87. No. 3. P. 310.
  13. Тамм И.Е. Основы теории электричества. М.: Наука, 1976. 616 c.
  14. Ахиезер А.И., Барьяхтар В.Г., Пелетминский С.В. Спиновые волны. М.: Наука, 1967. 368 c.
  15. Стрэттон Дж.А. Теория электромагнетизма. М.: ОГИЗ, 1948, 538 c.
  16. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика. Т. VIII. Электродинамика сплошных сред. М.: Наука, 1982. 621 c.
  17. Амеличев В.В., Васильев Д.В., Костюк Д.В. и др. // Микроэлектроника. 2021. Т. 50. № 6. С. 461.
  18. Вдовичев С.Н., Грибков Б.А., Гусев С.А. и др. // Письма в ЖЭТФ. 2011. T. 94. № 5. C. 418; Vdovichev S.N., Gribkov B.A., Gusev S.A. et al. // JETP Lett. 2011. V. 94. No. 5. P. 386.
  19. Wang S., Fujiwara H., Sun M. // JMMM. 2005. V. 295. P. 246.
  20. Polyakov O., Amelichev V., Zhukov D. et al. // Sensors. 2021. V. 21. P. 2118.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024