Giant Planar Hall Effect in an Ultra-Pure Mercury Selenide Single Crystal Sample
- Autores: Bobin S.B.1, Lonchakov A.T.1
- 
							Afiliações: 
							- Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
 
- Edição: Volume 118, Nº 7-8 (10) (2023)
- Páginas: 506-512
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/661558
- DOI: https://doi.org/10.31857/S1234567823190060
- EDN: https://elibrary.ru/XRAWJR
- ID: 661558
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
A giant planar Hall effect with an amplitude of about 50 mΩ cm at a temperature of T = 80 K in a magnetic field of 10 T has been detected in an ultra-pure HgSe single crystal sample with an electron density of 5.5 × 1015 cm–3. Its oscillating dependence on the rotation angle of the sample in various magnetic fields has been determined. Attributes (oscillation period, positions of extrema, correlation between the amplitudes of planar Hall and planar longitudinal magnetoresistance) indicate that the planar Hall effect in this nonmagnetic gapless semimetal with an isotropic Fermi surface originates from the chiral anomaly. This is a solid argument for the topological nature of the electronic spectrum of HgSe.
Sobre autores
S. Bobin
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
														Email: bobin@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
A. Lonchakov
Mikheev Institute of Metal Physics, Ural Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: bobin@imp.uran.ru
				                					                																			                												                								620108, Yekaterinburg, Russia						
Bibliografia
- C. Goldberg and R.E. Davis, Phys. Rev. 94, 1121 (1954).
- Y. You, Y. Gong, H. Li, Z. Li, M. Zhu, J. Tang, E. Liu, Y. Yao, G. Xu, F. Xu, and W. Wang, Phys. Rev. B 100, 134441 (2019).
- K.M. Seemann, F. Freimuth, H. Zhang, S. Bl�ugel, Y. Mokrousov, D.E. B�urgler, and C.M. Schneider, Phys. Rev. Lett. 107, 086603 (2011).
- Y. Liu, J. Yang, W. Wang, H. Du, W. Ning, L. Ling, W. Tong, Z. Qu, G. Cao, Y. Zhang, and M. Tian, Phys. Rev. B 95, 161103 (2017).
- J. Li, S.L. Li, Z.W. Wu, S. Li, H. F. Chu, J. Wang, Y. Zhang, H.Y. Tian, and D.N. Zheng, J. Phys. Condens. Matter 22, 146006 (2010).
- H.X. Tang, R.K. Kawakami, D.D. Awschalom, and M. L. Roukes, Phys. Rev. Lett. 90, 107201 (2003).
- D. Thompson, L. Romankiw, and A. Mayadas, IEEE Trans. Magn. 11, 1039 (1975).
- Y. Bason, L. Klein, J.-B. Yau, X. Hong, J. Hoffman, and C.H. Ahn, J. Appl. Phys. 99, 08R701 (2006).
- F.N.V. Dau, A. Schuhl, J.R. Childress, and M. Sussiau, Sensors and Actuators A: Physical 53, 256 (1996).
- S.M. Young, S. Zaheer, J.C.Y. Teo, C. L. Kane, E. J. Mele, and A.M. Rappe, Phys. Rev. Lett. 108, 140405 (2012).
- Z. Wang, Y. Sun, X.-Q. Chen, C. Franchini, G. Xu, H. Weng, X. Dai, and Z. Fang, Phys. Rev. B 85, 195320 (2012).
- Z. Wang, H. Weng, Q. Wu, X. Dai, and Z. Fang, Phys. Rev. B 88, 125427 (2013).
- S.-M. Huang, S.-Y. Xu, I. Belopolski, C.-C. Lee, G. Chang, B.K. Wang, N. Alidoust, G. Bian, M. Neupane, C. Zhang, S. Jia, A. Bansil, H. Lin, and M. Z. Hasan, Nat. Commun. 6, 7373 (2015).
- H. Weng, C. Fang, Z. Fang, B.A. Bernevig, and X. Dai, Phys. Rev. X 5, 011029 (2015).
- S.-Y. Xu, I. Belopolski, N. Alidoust et al. (Collaboration), Science 349, 613 (2015).
- B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G. F. Chen, Z. Fang, X. Dai, T. Qian, and H. Ding, Phys. Rev. X 5, 031013 (2015).
- A.A. Burkov, Nature Mater. 15, 1145 (2016).
- A.A. Burkov, Phys. Rev. B 96, 041110 (2017).
- S. Nandy, G. Sharma, A. Taraphder, and S. Tewari, Phys. Rev. Lett. 119, 176804 (2017).
- H.B. Nielsen and M. Ninomiya, Phys. Lett. B 130, 389 (1983).
- T.D.C. Bevan, A. J. Manninen, J.B. Cook, J.R. Hook, H.E. Hall, T. Vachaspati, and G. E. Volovik, Nature 386, 689 (1997).
- P. Li, C.H. Zhang, J.W. Zhang, Y. Wen, and X.X. Zhang, Phys. Rev. B 98, 121108 (2018).
- S. Xu, H. Wang, X.-Y. Wang, Y. Su, P. Cheng, and T.-L. Xia, arXiv (2018), https://arxiv.org/abs/1811.06767.
- Sonika, M.K. Hooda, S. Sharma, and C. S. Yadav, Appl. Phys. Lett. 119, 261904 (2021).
- H. Li, H.-W. Wang, H. He, J. Wang, and S.-Q. Shen, Phys. Rev. B 97, 201110 (2018).
- M. Wu, G. Zheng, W. Chu, Y. Liu, W. Gao, H. Zhang, J. Lu, Y. Han, J. Zhou, W. Ning, and M. Tian, Phys. Rev. B 98, 161110 (2018).
- R. Singha, S. Roy, A. Pariari, B. Satpati, and P. Mandal, Phys. Rev. B 98, 081103(R) (2018).
- A. Vashist, R.K. Singh, N. Wadehra, S. Chakraverty, and Y. Singh, arXiv (2018), https://arxiv.org/abs/1812.06485.
- S. Liang, J. Lin, S. Kushwaha, J. Xing, N. Ni, R. J. Cava, and N.P. Ong, Phys. Rev. X 8, 031002 (2018).
- N. Kumar, S.N. Guin, C. Felser, and C. Shekhar, Phys. Rev. B 98, 041103 (2018).
- F.C. Chen, X. Luo, J. Yan, Y. Sun, H.Y. Lv, W. J. Lu, C.Y. Xi, P. Tong, Z.G. Sheng, X.B. Zhu, W.H. Song, and Y.P. Sun, Phys. Rev. B 98, 041114 (2018).
- P. Li, C. Zhang, Y. Wen, L. Cheng, G. Nichols, D.G. Cory, G.-X. Miao, and X.-X. Zhang, Phys. Rev. B 100, 205128 (2019).
- Q.R. Zhang, B. Zeng, Y.C. Chiu et al. (Collaboration), Phys. Rev. B 100, 115138 (2019).
- Q. Liu, F. Fei, B. Chen, X. Bo, B. Wei, S. Zhang, M. Zhang, F. Xie, M. Naveed, X. Wan, F. Song, and B. Wang, Phys. Rev. B 99, 155119 (2019).
- Z. Li, T. Xiao, R. Zou, J. Li, Y. Zhang, Y. Zeng, M. Zhou, J. Zhang, and W. Wu, J. Appl. Phys. 127, 054306 (2020).
- D.E. Kharzeev, Progress in Particle and Nuclear Physics 75, 133 (2014).
- B. Z. Spivak and A.V. Andreev, Phys. Rev. B 93, 085107 (2016).
- A.A. Burkov, Phys. Rev. B 91, 245157 (2015).
- Q. Li, D.E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosi, A.V. Fedorov, R.D. Zhong, J.A. Schneeloch, G.D. Gu, and T. Valla, Nat. Phys 12, 550 (2016).
- A. Sekine, D. Culcer, and A.H. MacDonald, Phys. Rev. B 96, 235134 (2017).
- A.T. Lonchakov and S.B. Bobin, J. Phys. Condens. Matter 35, 065501 (2023).
- A.T. Lonchakov, S.B. Bobin, V.V. Deryushkin, V. I. Okulov, T.E. Govorkova, and V.N. Neverov, Appl. Phys. Lett. 112, 082101 (2018).
- S.B. Bobin, A.T. Lonchakov, V.V. Deryushkin, and V.N. Neverov, J. Phys. Condens. Matter 31, 115701 (2019).
- A.T. Lonchakov, S.B. Bobin, V.V. Deryushkin, and V.N. Neverov, J. Phys. Condens. Matter 31, 405706 (2019).
- C.R. Whitsett, Phys. Rev. 138, A829 (1965).
- I.M. Tsidilkovski, Electron Spectrum of Gapless Semiconductors, Springer, Berlin, N.Y. (1996).
- C.-L. Zhang, S.-Y. Xu, I. Belopolski et al. (Collaboration), Nat. Commun. 7, 10735 (2016).
- X. Huang, L. Zhao, Y. Long, P.Wang, D. Chen, Z. Yang, H. Liang, M. Xue, H. Weng, Z. Fang, X. Dai, and G. Chen, Phys. Rev. X 5, 031023 (2015).
- C. Shekhar, A.K. Nayak, Y. Sun et al. (Collaboration), Nat. Phys. 11, 645 (2015).
- Z. Wang, Y. Zheng, Z. Shen, Y. Lu, H. Fang, F. Sheng, Y. Zhou, X. Yang, Y. Li, C. Feng, and Z.-A. Xu, Phys. Rev. B 93, 121112 (2016).
- J. Du, H. Wang, Q. Chen, Q.H. Mao, R. Khan, B. J. Xu, Y.X. Zhou, Y.N. Zhang, J.H. Yang, B. Chen, C.M. Feng, and M.H. Fang, Science China Physics, Mechanics & Astronomy 59, 657406 (2016).
- W. Gao, M. Han, Z. Chen, A. Zhu, Y. Han, M. Zhu, X. Zhu, and M. Tian, Appl. Phys. Lett. 122, 173102 (2023).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
