Optical Modes in Elliptical Microcavities for Single-Photon Sources
- Authors: Kazanov D.R1, Monakhov A.M1
- 
							Affiliations: 
							- Ioffe Institute
 
- Issue: Vol 117, No 5-6 (3) (2023)
- Pages: 414-419
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/662549
- DOI: https://doi.org/10.31857/S1234567823060046
- EDN: https://elibrary.ru/QSEJOG
- ID: 662549
Cite item
Abstract
A theory of optical modes in an elliptical microcavity has been developed using Mathieu functions in elliptical coordinates. A key difference from the circular case is the splitting of doubly degenerate modes. Split optical modes have been numerically calculated and their symmetry has been determined. A method has been proposed to choose the parameters of a cavity for a certain wavelength. The difference between the energies of optical modes in the cavity with metallic walls and in the dielectric cavity is no more than ~20%. The dispersion relations of optical modes show the possibility of degeneracy of modes with different symmetries, which allows the spectral and polarization filtering of radiation of single-photon sources and the fabrication of sources of multiply entangled states.
About the authors
D. R Kazanov
Ioffe Institute
														Email: kazanovdr@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
A. M Monakhov
Ioffe Institute
							Author for correspondence.
							Email: kazanovdr@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
References
- M. Arcari, I. S'ollner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, and P. Lodahl, Phys. Rev. Lett. 113, 093603 (2014).
- R. Uppu, F. T. Pedersen, Y. Wang, C. T. Olesen, C. Papon, X. Zhou, L. Midolo, S. Scholz, A. D. Wieck, A. Ludwig, and P. Lodahl, Sci. Adv. 6, 50 (2020).
- I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Ger'ard, Opt. Express 17, 2095 (2009).
- М. А. Бобров, С. А. Блохин, Н. А. Малеев, А. Г. Кузьменков, А. А. Блохин, А. П. Васильев, Ю. А. Гусева, М. В. Рахлин, А. И. Галимов, Ю. М. Серов, С. И. Трошков, В. М. Устинов, А. А. Торопов, Письма в ЖЭТФ 116(9), 592 (2022).
- P. Senellart, G. Solomon, and A. White, Nat. Nanotechnol. 12, 1026 (2017).
- Y.-J. Wei, Y.-M. He, M.-C. Chen, Y.-N. Hu, Y. He, D. Wu, C. Schneider, M. Kamp, S. H¨o ing, C.-Y. Lu, and J.-W. Pan, Nano Lett. 14(11), 6515 (2014).
- H. Wang, Y.-M. He, T.-H. Chung et al. (Collaboration), Nat. Photon. 13, 770 (2019).
- U. M. Gu¨r, M. Mattes, S. Arslanagi'c, and N. Gregersen, Appl. Phys. Lett. 118, 061101 (2021).
- X. Chen, R. Su, J. Liu, J. Li, and X.-H. Wang, Photonics Research 10, 2066 (2022).
- B. Gayral, J. M. G'erard, B. Legrand, E. Costard, and V. Thierry-Mieg, Appl. Phys. Lett. 72, 1421 (1998).
- N. McLachlan, Theory and Application of Mathieu Functions, Oxford University Press, Oxford (1947).
- М. Абрамовиц, И. Стиган, Справочник по специальным функциям, Наука, М. (1979).
- Л. А. Вайнштейн, Электромагнитные волны, АСТ, М. (1988), 440 с.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					