Quasicrystalline Structures with Narrow-Band Frequency–Angular Selectivity
- Authors: Chistyakov V.A1, Sidorenko M.S1, Sayanskiy A.D1, Rybin M.V1,2
- 
							Affiliations: 
							- Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia
- Ioffe Institute, 194021, St. Petersburg, Russia
 
- Issue: Vol 117, No 9-10 (5) (2023)
- Pages: 740-745
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/662550
- DOI: https://doi.org/10.31857/S1234567823100051
- EDN: https://elibrary.ru/CLLIMC
- ID: 662550
Cite item
Abstract
Design methods in the reciprocal space allow one to obtain structures with desired properties. Quasicrystalline photonic structures, which ensure the selective scattering of an electromagnetic wave incident on the sample, have been designed. The maxima of the Fourier transform of the desired distribution of the permittivity in the reciprocal space are located along two arcs on the Ewald sphere, which corresponds to the scattering of the wave with the required wavelength and angle of incidence. The material distribution has been determined by the transition to the real space. A structure with a low dielectric contrast has been formed after the binarization of the refractive index. The theoretical analysis of the properties of the structure has confirmed the frequency–angular selectivity of scattering. The numerical calculations show the possibility of achieving the effective scattering and absorption of the electromagnetic energy up to 94% in a narrow frequency range and in a narrow interval of angles of incidence at a dielectric contrast of two materials of 1.07.
About the authors
V. A Chistyakov
Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia
														Email: v.chistyakov@metalab.ifmo.ru
				                					                																			                												                														
M. S Sidorenko
Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia
														Email: v.chistyakov@metalab.ifmo.ru
				                					                																			                												                														
A. D Sayanskiy
Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia
														Email: v.chistyakov@metalab.ifmo.ru
				                					                																			                												                														
M. V Rybin
Faculty of Physics, ITMO University, 191101, St. Petersburg, Russia; Ioffe Institute, 194021, St. Petersburg, Russia
							Author for correspondence.
							Email: v.chistyakov@metalab.ifmo.ru
				                					                																			                												                														
References
- E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
- J. D. Joannopoulos, P. R. Villeneuve, and S. Fan, Nature 386, 143 (1997).
- J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Princet. Univ. Press. Princeton, NJ [ua] (2008).
- M. V. Rybin and M. F. Limonov, Phys.-Uspekhi 62, 823 (2019).
- P. Tonkaev and Y. Kivshar, JETP Lett. 112, 615 (2020).
- A. M. Chernyak, M. G. Barsukova, A. S. Shorokhov, A. I. Musorin, and A. A. Fedyanin, JETP Lett. 111, 46 (2020).
- S. Molesky, Z. Lin, A. Y. Piggott, W. Jin, J. Vuckovi'c, and A. W. Rodriguez, Nat. Photonics 12, 659 (2018).
- M. M. R. Elsawy, S. Lanteri, R. Duvigneau, J. A. Fan, and P. Genevet, Laser Photonics Rev. 14, 1900445 (2020).
- K. R. Safronov, V. O. Bessonov, and A. A. Fedyanin, JETP Lett. 114, 321 (2021).
- P. R. Wiecha, A. Arbouet, C. Girard, and O. L. Muskens, Photonics Nanostructures: Fundam. Appl. 9, B182 (2021).
- P. R. Wiecha, A. Y. Petrov, P. Genevet, and A. Bogdanov, Photonics Nanostructures: Fundam. Appl. 52, 101084 (2022).
- P. M. Piechulla, B. Fuhrmann, E. Slivina, C. Rockstuhl, R. B. Wehrspohn, and A. N. Sprafke, Adv. Opt. Mater. 9, 2170068 (2021).
- W. Man, M. Florescu, K. Matsuyama, P. Yadak, G. Nahal, S. Hashemizad, E. Williamson, P. Steinhardt, S. Torquato, and P. Chaikin, Opt. Express 21, 19972 (2013).
- A. D. Sinelnik, I. I. Shishkin, X. Yu, K. B. Samusev, P. A. Belov, M. F. Limonov, P. Ginzburg, and M. V. Rybin, Adv. Opt. Mater. 8, 2001170 (2020).
- P. Wang, Y. Zheng, X. Chen, C. Huang, Y. V. Kartashov, L. Torner, V. V. Konotop, and F. Ye, Nature 577, 42 (2020).
- N. Lassaline, R. Brechbu�hler, S. J. Vonk, K. Ridderbeek, M. Spieser, S. Bisig, B. Le Feber, F. T. Rabouw, and D. J. Norris, Nature 582, 506 (2020).
- L. Maiwald, T. Sommer, M. S. Sidorenko, R. R. Yafyasov, M. E. Mustafa, M. Schulz, M. V. Rybin, M. Eich, and A. Y. Petrov, Adv. Opt. Mater. 10, 2100785 (2022).
- V. A. Chistyakov, M. S. Sidorenko, A. D. Sayanskiy, and M. V. Rybin, Phys. Rev. B 107, 014205 (2023).
- K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
- K. X. Wang, Z. Yu, V. Liu, A. Raman, Y. Cui, and S. Fan, Energy Environ. Sci. 7, 2725 (2014).
- T. M. Mercier, T. Rahman, C. Krishnan, E. Khorani, P. J. Shaw, M. E. Pollard, S. A. Boden, P. G. Lagoudakis, and M. D. Charlton, Nano Energy 84, 105874 (2021).
- C. Guo, T. Sun, F. Cao, Q. Liu, and Z. Ren, Light Sci. Appl. 3, e161 (2014).
- R. Saive, Progress in Photovoltaics: Research and Applications 29, 1125 (2021).
- P. W. Anderson, Phys. Rev. 109, 1492 (1958).
- S. John, Phys. Rev. Lett. 58, 2486 (1987).
- L. Levi, M. Rechtsman, B. Freedman, T. Schwartz, O. Manela, and M. Segev, Science 332, 1541 (2011).
- A. Petrov (private communications in December of 2021).
- L. Maiwald, S. Lang, D. Jalas, H. Renner, A. Y. Petrov, and M. Eich, Opt. Express 26, 11352 (2018).
- Y. Kim, M. M. Tentzeris, and S. Lim, Materials 12, 402 (2019).
- G. Boussatour, P.-Y. Cresson, B. Genestie, N. Joly, and T. Lasri, IEEE Microw. Wirel. Compon. Lett. 28, 374 (2018).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					