Two Dynamical Regimes of Coherent Columnar Vortices in a Rotating Fluid
- Authors: Tumachev D.D.1,2, Filatov S.V.1,2, Vergeles S.S.1,3, Levchenko A.A.1,2,3
- 
							Affiliations: 
							- Landau Institute for Theoretical Physics, Russian Academy of Sciences
- Osipyan Institute of Solid State Physics, Russian Academy of Sciences
- Faculty of Physics, National Research University Higher School of Economics
 
- Issue: Vol 118, No 5-6 (9) (2023)
- Pages: 430-437
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663100
- DOI: https://doi.org/10.31857/S1234567823180076
- EDN: https://elibrary.ru/WXWJOG
- ID: 663100
Cite item
Abstract
Vortex flow generation in an incompressible fluid was investigated experimentally inside a rotating closed cubic aquarium. The flow was excited by producing small-scale eddies near the side edges of the cube. Coherent columnar vortices-cyclones extending from the bottom to the lid of the cube were observed in the liquid volume. The lifetime of the cyclones was much longer than the attenuation time due to the viscous friction on the bottom and the lid. It was found that there are two regimes of quasi-two-dimensional turbulence, which are characterized by different ways of interaction between quasi two-dimensional flow and inertial waves. The radial profiles of the time- averaged azimuth velocity in the coherent vortices in these two regimes are investigated. It is shown that the vortices differ in size and in vorticity distribution along the radius.
About the authors
D. D. Tumachev
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences
														Email: d.tumachev@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia						
S. V. Filatov
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences
														Email: d.tumachev@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia						
S. S. Vergeles
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Faculty of Physics, National Research University Higher School of Economics
														Email: d.tumachev@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;101000, Moscow, Russia						
A. A. Levchenko
Landau Institute for Theoretical Physics, Russian Academy of Sciences;Osipyan Institute of Solid State Physics, Russian Academy of Sciences;Faculty of Physics, National Research University Higher School of Economics
							Author for correspondence.
							Email: d.tumachev@issp.ac.ru
				                					                																			                												                								142432, Chernogolovka, Moscow region, Russia;142432, Chernogolovka, Moscow region, Russia;101000, Moscow, Russia						
References
- H. P. Greenspan, The theory of rotating uids, At the University Press, Cambridge (1968).
- P. A. Davidson, Turbulence in Rotating, Strati ed and Electrically Conducting Fluids, Cambridge University Press, Cambridge (2013).
- S. J. Beresh, Meas. Sci. Technol. 32, 102003 (2021).
- U. Frisch, Turbulence: the legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge (1995).
- S. B. Pope, Turbulent ows, Cambridge University Press, Cambridge (2000).
- G. Bo etta and R. E. Ecke, Ann. Rev. Fluid. Mech. 44, 427 (2012).
- J. Sommeria, J. Fluid Mech. 170, 139 (1986).
- Нелинейные волны. Самоорганизация, под ред. А. В. Гапонов-Грехов, М. И. Рабинович, Наука, М. (1983).
- S. K. Robinson, Ann. Rev. Fluid. Mech. 23, 601 (1991).
- J. Laurie, G. Bo etta, G. Falkovich, I. Kolokolov, and V. Lebedev, Phys. Rev. Lett. 113, 254503 (2014).
- A. McEwan, Nature 260, 126 (1976).
- F. S. Godeferd and F. Moisy, Appl. Mech. Rev. 67, 030802 (2015).
- A. Alexakis and L. Biferale, Phys. Rep. 767, 1 (2018).
- A. Campagne, B. Gallet, F. Moisy, and P.-P. Cortet, Phys. Rev. E 91, 043016 (2015).
- F. Pizzi, G. Mamatsashvili, A. J. Barker, A. Giesecke and F. Stefani, Phys. Fluids 34, 125135 (2022).
- I. Kolokolov, L. Ogorodnikov, and S. Vergeles, Phys. Rev. Fluids 5, 034604 (2020).
- V. M. Parfenyev and S. S. Vergeles, Phys. Fluids 33, 115128 (2021).
- W. Thielicke and R. Sonntag, Journal of Open Research Software 9, 12 (2021).
- E. Stamhuis and W. Thielicke, Journal of Open Research Software 2, 30 (2014).
- E. Monsalve, M. Brunet, B. Gallet, and P.-P. Cortet, Phys. Rev. Lett. 125, 254502 (2020).
- N. Lanchon, D. O. Mora, E. Monsalve, and P.-P. Cortet, Phys. Rev. Fluids 8, 054802 (2023).
- C. Morize, F. Moisy, and M. Rabaud, Phys. Fluids 17, 095105 (2005).
- E. Hop nger, F. Browand, and Y. Gagne, J. Fluid Mech. 125, 505 (1982).
- J. E.Ruppert-Felsot, O. Praud, E. Sharon, and H. L. Swinney, Phys. Rev. E 72, 016311 (2005).
- A. V. Orlov, M. Y. Brazhnikov, and A. A. Levchenko, JETP Lett. 107, 157 (2018).
- L. Z. Sans'on and G. van Heijst, J. Fluid Mech. 412, 75 (2000).
- I. Kolokolov and V. Lebedev, Phys. Rev. E 93, 033104 (2016).
- L. Jacquin, O. Leuchter, C. Cambonxs, and J. Mathieu, J. Fluid Mech. 220, 1 (1990).
- V. M. Parfenyev, I. A. Vointsev, A. O. Skoba, and S. S. Vergeles, Phys. Fluids 33, 065117 (2021).
- A. Frishman and C. Herbert, Phys. Rev. Lett. 120, 204505 (2018).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					