Generation of Giant Magnetic Fields in a Hollow Mesoscale Sphere
- Authors: Minin O.V.1, Dzhou S.2, Minin I.V.1
- 
							Affiliations: 
							- Tomsk Polytechnic University
- Huaiyin Institute of Technology
 
- Issue: Vol 118, No 3-4 (8) (2023)
- Pages: 197-203
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663125
- DOI: https://doi.org/10.31857/S1234567823150090
- EDN: https://elibrary.ru/HXOSAD
- ID: 663125
Cite item
Abstract
The superresonance effect for a hollow dielectric sphere is numerically simulated with the Mie theory. It is shown for the first time that weakly dissipative mesoscale spheres with an air-filled cavity exhibit a high-order Fano resonance related to internal Mie modes. Superresonance in a hollow sphere is achieved by the accurate choice of the cavity radius, while for a monolithic dielectric sphere, it is ensured by the accurate choice of the outer diameter of the particle under study. In this case, the relative intensities of the resonance peaks in the optical range for both magnetic and electric fields near the sphere poles can have enormous values of 106−107, if the magnetic field magnitude exceeds that of the electric field by a factor larger than 15 for the hollow sphere with a Mie size parameter about 40.
About the authors
O. V. Minin
Tomsk Polytechnic University
														Email: prof.minin@gmail.com
				                					                																			                												                								Tomsk, 634050 Russia						
S. Dzhou
Huaiyin Institute of Technology
														Email: prof.minin@gmail.com
				                					                																			                												                								Huai’an, 223003 People’s Republic of China						
I. V. Minin
Tomsk Polytechnic University
							Author for correspondence.
							Email: prof.minin@gmail.com
				                					                																			                												                								Tomsk, 634050 Russia						
References
- B. Luk'yanchuk, N. I. Zheludev, S.A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C.T. Chong, Nature Mater. 9, 707 (2010).
- П. Тонкаев, Ю. Кившарь, Письма в ЖЭТФ 112(10), 658 (2020).
- A.E. Miroshnichenko, Phys. Rev. A 81, 053818 (2010).
- H. Chen, L. Shao, Y.C. Man, C. Zhao, J. Wang, and B. Yang, Nano-micro small. 8(10), 1503 (2012).
- S. Garg and M. Venkatapathi, J. Opt. 19, 075603 (2017).
- M. Retsch, M. Schmelzeisen, H.-J. Butt, and E. L. Thomas, Nano Lett. 11, 1389 (2011).
- S. Liu, B. Shi, Y. Wang, L. Cui, J. Yamg, W. Sun, and H.Li, Opt. Lett. 42(22), 4659 (2017).
- Д.В. Стороженко, В.П. Дзюба, Ю.Н. Кульчин, Письма в ЖТФ 44(16), 75 (2018).
- B. Keen and A. Porter, Roy. Soc. Proc. A 89, 370 (1913).
- Z. Wang, B. Luk'yanchuk, L. Yue, B. Yan, J. Monks, R. Dhama, O.V. Minin, I.V. Minin, S. Huang, and A. Fedyanin, Sci. Rep. 9, 20293 (2019).
- L. Yue, B. Yan, J. Monks, Y. Joya, R. Dhama, O.V. Minin, and I.V. Minin, Ann. Phys. (Berlin) 532, 2000373 (2020).
- B. S. Luk'yanchuk, A. Bekirov, Z. Wang, I.V. Minin, O.V. Minin, and A. Fedyanin, Physics of Wave Phenomena 30(4), 217 (2022).
- V.R. Dantham and P.B. Bisht, J. Opt. Soc. Am. B 26(2), 290 (2009).
- S. Liu, B. Shi, W. Sun, H. Li, and J. Yang, Appl. Phys. Express 11, 082201 (2018).
- T. Yang, T. Fu, and Y. An, Phys. Plasmas 29, 012103 (2022).
- Y. Cao, Z. Liu, O.V. Minin, and I.V. Minin, Nanomaterials 9(2), 186 (2019).
- Y. Geints, O.V. Minin, and I.V. Minin, Opt. Commun. 524, 128779 (2022).
- I.V. Minin, O.V. Minin, and S. Zhou, JETP Lett. 116(3), 144 (2022).
- W. Cai, U. Chettiar, H. Yuan, V. de Silva, A. Kildishev, V. Drachev, and V. Shalaev, Opt. Express 15, 3333 (2007).
- I.V. Minin, O.V. Minin, and S. Zhou, Tech. Phys. Lett. 48(18), 41 (2022).
- O.V. Minin, I.V. Minin, and S. Zhou, Optoelectronics, Instrumentation and Data Processing 58(5), 514 (2022).
- C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, WILEY-VCH Verlag, N.Y. (1998).
- R. L. Hightower and C. B. Richardson, Appl. Opt. 27(23), 4850 (1988).
- I. L. Rasskazov, P. S. Carney, and A. Moroz, OSA Continuum 3, 2290 (2020).
- Г.П. Зограф, Й.Ф. Ю, К.В. Барышникова, А.И. Кузнецов, С.В. Макаров, Письма в ЖЭТФ 107(11), 732 (2018).
- T. Hoang, Y. Duan, X. Chen, and G. Barbastathis, Opt. Express 23(9), 12337 (2015).
- A. Chiasera, Y. Dumeige, P. Feron,M. Ferrari, Y. Jestin, G. Conti, S. Pelli, S. Soria, and G. Righini, Laser Photonics Rev. 4(3), 457 (2010).
- А.П. Тарасов, А.С. Лавриков, Л.А. Задорожная, В.М. Каневский, Письма в ЖЭТФ 115(9), 554 (2022).
- А.Н. Ораевский, Квантовая электроника 32(5), 377 (2002).
- D. Pluchon, N. Huby, V. Vie, P. Panizza, and B. Beche, Optics and Photonics Journal 3(4), 291 (2013).
- I. Kandas, B. Zhang, C. Daengngam, I. Ashry, C.-Y. Jao, B. Peng, S.K. Ozdemir, H.D. Robinson, J.R. Heflin, L. Yang, and Y. Xu, Opt. Express 21, 20601 (2013).
- X. Xie and X. Zhou, Colloids and Surfaces A: Physicochem. Eng. Aspects 386, 158 (2011).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					