Rivulet of a Non-Newtonian Fluid Draining on an Inclined Superhydrophobic Surface
- Authors: Ageev A.I.1, Osiptsov A.N.1
- 
							Affiliations: 
							- Institute of Mechanics, Moscow State University
 
- Issue: Vol 118, No 3-4 (8) (2023)
- Pages: 171-176
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663120
- DOI: https://doi.org/10.31857/S1234567823150053
- EDN: https://elibrary.ru/HWSYNN
- ID: 663120
Cite item
Abstract
A rivulet of a power-law-rheology fluid steadily draining from a point source on an inclined superhydrophobic plane is considered. An equation for the shape of the cross section of the rivulet has been derived in the thin layer approximation with the inhomogeneous slip boundary condition (slip coefficients are power functions of the spatial coordinates). Under the assumption that the rivulet is symmetric with respect to its middle plane, the conditions for the existence of a class of self-similar solutions of one ordinary differential equation of the second order have been determined. For some slip parameters of the superhydrophobic surface and some rheological indices of the draining fluid, analytical and numerical solutions from the found class have been constructed and the shape of the cross section of the rivulet and the geometry of the wetting spot have been analyzed.
About the authors
A. I. Ageev
Institute of Mechanics, Moscow State University
														Email: aaiageev@mail.ru
				                					                																			                												                								Moscow, 119192 Russia						
A. N. Osiptsov
Institute of Mechanics, Moscow State University
							Author for correspondence.
							Email: osiptsov@imec.msu.ru
				                					                																			                												                								Moscow, 119192 Russia						
References
- J. Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. B. Durairaj, and G. Mageshwaran, J. Coating Technol. Res. 15, 231 (2018).
- А. И. Агеев, А. Н. Осипцов, Коллоидный журнал 84(4), 380 (2022).
- А. И. Агеев, А. Н. Осипцов, Изв. РАН, Механика жидкости и газа 6, 35 (2015).
- S. Patlazhan and S. Vagner, Phys. Rev. E 96, 013104 (2017).
- G. G. Pereira, J. Non-Newton. Fluid Mech. 157, 197 (2009).
- L. L. Ferras, J. M. Nobrega, and F. T. Pinho, J. Non-Newton. Fluid Mech. 175, 76 (2012).
- S. Chakraborty, T.W.-H. Sheu, and S. Ghosh, Phys. Fluids 31, 013102 (2019).
- V. M. Starov, A. N. Tyatyushkin, M. G. Velarde, and S. A. Zhdanov, J. Colloid Interface Sci. 257, 284 (2003).
- V. D. Federico, S. Malavasi, and S. Cintoli, Meccanica 41, 207 (2006).
- S. K. Wilson, B. R. Du y, and R. Hunt, Q. J. Mech. Appl. Math. 55(3), 385 (2002).
- F. H. H. Al Mukahal, S. K. Wilson, and B. R. Du y, J. Non-Newton. Fluid Mech. 224, 30 (2015).
- Е. А. Веденеева, Изв. РАН, Механика жидкости и газа 1, 19 (2021).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					