Long-range Multiparticle Interactions Induced by Neutrino Exchange in Neutron Star Matter
- Authors: Krivoruchenko M.I1
- 
							Affiliations: 
							- National Research Cenetr Kurchatov Institute
 
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 98-101
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663599
- DOI: https://doi.org/10.31857/S1234567823020027
- EDN: https://elibrary.ru/ODYFWI
- ID: 663599
Cite item
Abstract
Forces with a large radius of interaction can have a significant impact on the equation of state of matter. Low-mass neutrinos generate a long-range potential due to the exchange of neutrino pairs. We discuss a possible relationship between the neutrino masses, which determine the interaction radius of the neutrino-pair exchange potential, and the equation of state of neutron matter. Contrary to previous statements, the thermodynamic potential, when decomposed into the number of neutrino interactions, vanishes in any decomposition order, except for the interaction of two neutrons. In the one-loop approximation, long-range multiparticle neutrino interactions are stable in the infrared region for all neutrino masses and do not affect the equation of state of neutron matter or the stability of neutron stars.
About the authors
M. I Krivoruchenko
National Research Cenetr Kurchatov Institute
							Author for correspondence.
							Email: mikhail.krivoruchenko@itep.ru
				                					                																			                												                								123182, Moscow, Russia						
References
- G. Feinberg and J. Sucher, Phys. Rev. 166, 1638 (1968).
- S.D.H. Hsu and P. Sikivie, Phys. Rev. D 49, 4951 (1994).
- J.A. Grifols, E. Masso, and R. Toldra, Phys. Lett. B 389, 563 (1996).
- E. Fischbach, Ann. Phys. (N.Y.) 247, 213 (1996).
- A. Segarra and J. Bernabeu, Phys. Rev. D 101, 093004 (2020).
- C. Itzykson and J.-M. Zuber,McGraw-Hill, N.Y. (1980), p. 705.
- M. I. Krivoruchenko, F. Simkovic, and A. Faessler, Phys. Rev. D 79, 125023 (2009).
- D.-H. Wen, B.-A. Li, and L.-W. Chen, Phys. Rev. Lett. 103, 211102 (2009).
- T.M.C. Abbott, M. Aguena, A. Alarcon et al. (DES Collaboration), Phys. Rev. D 105, 023520 (2022).
- M. Aker, A. Beglarian, J. Behrens et al. (KATRIN Collaboration), Nat. Phys. 18, 160 (2022).
- E. Fischbach, D.E. Krause, Q. L. Thien, and C. Scarlett, arXiv:2208.03790v1 [hep-ph] 7 Aug 2022.
- As. Abada, M.B. Gavela, and O. Pinea, Phys. Lett. B 387, 315 (1996).
- Е.М. Лифшиц, Л.П. Питаевский, Статистическая физика. Ч. 2. Теория конденсированного состояния. Теоретическая физика, т. IX, Физматлит, M. (2004), 496 с.
- A.Yu. Smirnov and F. Vissani, arXiv:9604443v2 [hep-ph] 23 May 1996.
- M. Ghosh, Yu. Grossman, W. Tangarife, X.-J. Xu, and B. Yu, arXiv:2209.07082v2 [hep-ph] 8 Nov 2022.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					