Band Structure of Bilayer Graphene Intercalated by Potassium Atoms. Ab Initio Calculations
- Autores: Akhmatov Z.A.1, Akhmatov Z.A.1,2
- 
							Afiliações: 
							- Kabardino-Balkarian State University
- Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences
 
- Edição: Volume 117, Nº 5-6 (3) (2023)
- Páginas: 363-368
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/662531
- DOI: https://doi.org/10.31857/S1234567823050075
- EDN: https://elibrary.ru/PXKGLV
- ID: 662531
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
Using the electron density functional theory, the electronic band structure of pure and potassium-intercalated bilayer graphene has been studied. It is shown that after the intercalation process, a band gap appears in the band structure of bilayer graphene. In addition, the energy gap changes nonlinearly depending on the intercalate concentration in the interlayer space of bilayer graphene. We also calculated the energy spectra of bilayer graphene containing vacancy defects, the presence of which leads to the appearance of mid-gap states.
Sobre autores
Zeytun Akhmatov
Kabardino-Balkarian State University
														Email: ahmatov.z@bk.ru
				                					                																			                												                								360004, Nalchik, Russia						
Zarif Akhmatov
Kabardino-Balkarian State University; Southern Mathematical Institute, Vladikavkaz Scientific Center, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: ahmatov.z@bk.ru
				                					                																			                												                								360004, Nalchik, Russia; 362027, Vladikavkaz, Russia						
Bibliografia
- K. S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).
- K. S. Novoselov, D.V. Andreeva, W. Ren, and G. Shan, Front. Phys. 14, 13301 (2019).
- M. Hu, N. Zhang, G. Shan, J. Gao, J. Liu, and R.K.Y. Li, Front. Phys. 13, 138113 (2018).
- R. Wang, X. Ren, Z. Yan, L. J. Jiang, W.E. I. Sha, and G.C. Shan, Front. Phys. 14, 13603 (2019).
- X. Gan, D. Englund, D.V. Thourhout, and J. Zhao, Appl. Phys. Rev. 9, 021302 (2022).
- A.Kh. Khokonov and Z.A. Akhmatov, J. Phys.: Conf. Ser. 1556, 012053 (2020).
- A.K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
- A.K. Geim, Science 324, 1530 (2009).
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K. S. Novoselov, and A.K. Geim, Rev. Mod. Phys. 81, 109 (2009).
- Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.- L. Gu, F. Liu, and W. Duan, Nano Lett. 7, 1469 (2007).
- M.Y. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Phys. Rev. Lett. 98, 206805 (2007).
- X. Li, X. Wang, L. Zhang, S. Lee, and H. Dai, Science 319, 1229 (2008).
- X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, Phys. Rev. Lett. 100, 206803 (2008).
- A. Betti, G. Fiori, and G. Iannaccone, Appl. Phys. Lett. 98, 212111 (2011).
- B. Huang, Q. Xu, and S. Wei, Phys. Rev. B 84, 155406 (2011).
- D. L. Tiwari and K. Sivasankaran, Superlattices and Microstructures 113, 244 (2018).
- G. Giovannetti, P.A. Khomyakov, G. Brocks, P. J. Kelly, and J. Brink, Phys. Rev. B 76, 073103 (2007).
- B. Uchoa and A.H. Castro Neto, Phys. Rev. Lett. 98, 146801 (2007).
- B. Uchoa, C.-Y. Lin, and A.H. Castro Neto, Phys. Rev. B 77, 035420 (2008).
- M. Wu, C. Cao, and J. Z. Jiang, Nanotechnology 21, 505202 (2010).
- P. Rani and V.K. Jindal, RSC Adv. 3, 802 (2013).
- Z.A. Akhmatov and Z.A. Akhmatov, Physical and chemical aspects of the study of clusters, nanostructures and nanomaterials 14, 277 (2022).
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, M. I. Katsnelson, L. Eaves, S.V. Morozov, A. S. Mayorov, N.M.R. Peres, A.H. Castro Neto, J. Leist, A.K. Geim, L.A. Ponomarenko, and K. S. Novoselov, Nano Lett. 12, 1707 (2012).
- L. Britnell, R.V. Gorbachev, R. Jalil, B.D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S.V. Morozov, N.M.R. Peres, J. Leist, A.K. Geim, K. S. Novoselov, and L.A. Ponomarenko, Science 335, 947 (2012).
- E.E. Vdovin, A. Mishchenko, M.T. Greenaway et al. (Collaboration), Phys. Rev. Lett. 116, 186603 (2016).
- K. S. Kim, A.L. Walter, L. Moreschini et al. (Collaboration), Nat. Mater. 12, 887 (2013).
- F. J. Culchac, R.R. Del Grande, R.B. Capaz, L. Chio, and E. S. Morell, Nanoscale 12, 5014 (2020).
- N.R. Chebrolu, B. L. Chittari, and J. Jung, Phys. Rev. B 99, 235417 (2019).
- P. Giannozzi, S. Baroni, N. Bonini et al. (Collaboration), J. Phys.: Condens. Matter 21, 395502 (2009).
- P.E. Blochl, Phys. Rev. B 50, 17953 (1994).
- J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).
- H. J. Monkhorst and J.D. Park, Phys. Rev. B 13, 5188 (1976).
- A.V. Rozhkov, A.O. Sboychakov, A.L. Rakhmanov, and F. Nori, Phys. Rep. 648, 1 (2016).
- T. Vu, T.K.Q. Nguyen, A. Huynh, T. Phan, and V. Tran, Superlattices and Microstructures 102, 451 (2017).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
