Quasistationary Polariton States in Mesocavities
- 作者: Belonovskiy A.V1, Nikolaev V.V2, Girshova E.I2
- 
							隶属关系: 
							- ITMO University
- Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
 
- 期: 卷 117, 编号 1-2 (1) (2023)
- 页面: 102-106
- 栏目: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663604
- DOI: https://doi.org/10.31857/S1234567823020039
- EDN: https://elibrary.ru/OEAPPC
- ID: 663604
如何引用文章
详细
When the strength of light–matter interaction (the Rabi splitting) in mesocavities is comparable to the energy spacing between the cavity modes, an exciton mode is coupled simultaneously to a number of optical modes. It has recently been demonstrated that a nonmonotonic dependence of the population of polariton states in mesocavities on the pump intensity is possible. Here, it is shown that an additional quasistationary state may appear in the hysteresis region and the time spent by the system in this state depends on the pump intensity.
作者简介
A. Belonovskiy
ITMO University
														Email: leha.s92.92@gmail.com
				                					                																			                												                								197101, St. Petersburg, Russia						
V. Nikolaev
Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
														Email: leha.s92.92@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
E. Girshova
Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
							编辑信件的主要联系方式.
							Email: leha.s92.92@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
参考
- C. Weisbuch, M. Nishioka, A. Ishikava, and Y. Akarawa, Phys. Rev. Lett. 69(23), 3314 (1992).
- R. Houdr'e, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Phys. Rev. Lett. 73(15), 2043 (1994).
- J. D. Berger, O. Lynges, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokine, M. A. Kaliteevski, and V. V. Zapasskii, Phys. Rev. B 54(3), 1975 (1996).
- J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443(7110), 409 (2006).
- S. Christopoulos, G. Baldassarri H¨oger von H¨ogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt'e,E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).
- A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
- A. Tredicucci, Y. Chen, V. Pellegrini, M. B¨orger, and F. Bassani, Phys. Rev. A 54, 3493 (1996).
- I. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
- H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, Phys. Rev. B 85, 075312 (2012).
- А. А. Деменев, С. С. Гаврилов, А. C. Бричкин, А. В. Ларионов, В. Д. Кулаковский, Письма в ЖЭТФ 100(8), 583 (2014).
- А. А. Деменев, С. С. Гаврилов, В. Д. Кулаковский, Письма в ЖЭТФ 95(1), 42 (2012).
- С. С. Гаврилов, А. С. Бричкин, А. А. Дородный, С. Г. Тиходеев, Н. А. Гиппиус, В. Д. Кулаковский, Письма в ЖЭТФ 92(3), 194 (2010).
- A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Semiconductor Science and Technology), Oxford University, Oxford (2007).
- E. K. Lindmark, T. R. Nelson, H. M. Gibbs, G. Khitrova, A. V. Kavokine, and M. A. Kaliteevski, Opt. Lett. 21, 994 (1996).
- A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, Phys. Rev. B 57(23), 14877 (1998).
- G. Pozina, C. Hemmingsson, A. V. Belonovski, I. V. Levitskii, M. I. Mitrofanov, E. I. Girshova, K. A. Ivanov, S. N. Rodin, K. M. Morozov, V. P. Evtikhiev, and M. A. Kaliteevski, Phys. Status Solidi A 217, 1900894 (2019).
- A. V. Belonovski, I. V. Levitskii, K. M. Morozov, G. Pozina, and M. A. Kaliteevski, Opt. Express 28(9), 12688 (2020).
- A. V. Belonovski, K. M. Morozov, E. I. Girshova, G. Pozina, and M. A. Kaliteevski, Opt. Express 29(13), 20724 (2021).
- T. C. H. Liew, A. V. Kavokin, T. Ostatnickiy, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302 (2010).
- E. B. Magnusson, I. G. Savenko, and I. A. Shelykh, Phys. Rev. B 84, 195308 (2011).
- W. J. Firth and A. J. Scroggie, Semiconductor Science and Technology 10, 1623 (1996).
- R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973), p. 184.
- F. P. Laussy, M. M. Glazov, A. Kavokin, D. M. Whittaker, and M. Guillaume, Phys. Rev. B 73(11), 115343 (2006).
- J. P. Reithmaier, Semicond. Sci. Technol. 23(12), 123001 (2008).
- F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. B 79, 235325 (2009).
- С. С. Гаврилов, УФН 190(2), 137 (2020).
- G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
- M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. H¨o ing, Phys. Rev. B 91, 081404 (2015).
- M. A. Kaliteevski, K. A. Ivanov, G. Pozina, and A. J. Gallant, Sci. Rep. 4, 5444 (2014).
- S. S. Demirchyan, T. A. Khudaiberganov, I. Y. Chestnov, and A. P. Alodzhants, Journal of Optical Technology 84(2), 75(2017).
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					