Quasistationary Polariton States in Mesocavities
- Authors: Belonovskiy A.V1, Nikolaev V.V2, Girshova E.I2
- 
							Affiliations: 
							- ITMO University
- Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
 
- Issue: Vol 117, No 1-2 (1) (2023)
- Pages: 102-106
- Section: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/663604
- DOI: https://doi.org/10.31857/S1234567823020039
- EDN: https://elibrary.ru/OEAPPC
- ID: 663604
Cite item
Abstract
When the strength of light–matter interaction (the Rabi splitting) in mesocavities is comparable to the energy spacing between the cavity modes, an exciton mode is coupled simultaneously to a number of optical modes. It has recently been demonstrated that a nonmonotonic dependence of the population of polariton states in mesocavities on the pump intensity is possible. Here, it is shown that an additional quasistationary state may appear in the hysteresis region and the time spent by the system in this state depends on the pump intensity.
About the authors
A. V Belonovskiy
ITMO University
														Email: leha.s92.92@gmail.com
				                					                																			                												                								197101, St. Petersburg, Russia						
V. V Nikolaev
Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
														Email: leha.s92.92@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
E. I Girshova
Submicron Heterostructures for Microelectronics, Research and Engineering Center, Russian Academy of Sciences
							Author for correspondence.
							Email: leha.s92.92@gmail.com
				                					                																			                												                								194021, St. Petersburg, Russia						
References
- C. Weisbuch, M. Nishioka, A. Ishikava, and Y. Akarawa, Phys. Rev. Lett. 69(23), 3314 (1992).
- R. Houdr'e, C. Weisbuch, R. P. Stanley, U. Oesterle, P. Pellandini, and M. Ilegems, Phys. Rev. Lett. 73(15), 2043 (1994).
- J. D. Berger, O. Lynges, H. M. Gibbs, G. Khitrova, T. R. Nelson, E. K. Lindmark, A. V. Kavokine, M. A. Kaliteevski, and V. V. Zapasskii, Phys. Rev. B 54(3), 1975 (1996).
- J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun, J. M. J. Keeling, F. M. Marchetti, M. H. Szymanska, R. Andre, J. L. Staehli, V. Savona, P. B. Littlewood, B. Deveaud, and Le Si Dang, Nature 443(7110), 409 (2006).
- S. Christopoulos, G. Baldassarri H¨oger von H¨ogersthal, A. J. D. Grundy, P. G. Lagoudakis, A. V. Kavokin, J. J. Baumberg, G. Christmann, R. Butt'e,E. Feltin, J.-F. Carlin, and N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007).
- A. Baas, J. Ph. Karr, H. Eleuch, and E. Giacobino, Phys. Rev. A 69, 023809 (2004).
- A. Tredicucci, Y. Chen, V. Pellegrini, M. B¨orger, and F. Bassani, Phys. Rev. A 54, 3493 (1996).
- I. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
- H. Flayac, G. Pavlovic, M. A. Kaliteevski, and I. A. Shelykh, Phys. Rev. B 85, 075312 (2012).
- А. А. Деменев, С. С. Гаврилов, А. C. Бричкин, А. В. Ларионов, В. Д. Кулаковский, Письма в ЖЭТФ 100(8), 583 (2014).
- А. А. Деменев, С. С. Гаврилов, В. Д. Кулаковский, Письма в ЖЭТФ 95(1), 42 (2012).
- С. С. Гаврилов, А. С. Бричкин, А. А. Дородный, С. Г. Тиходеев, Н. А. Гиппиус, В. Д. Кулаковский, Письма в ЖЭТФ 92(3), 194 (2010).
- A. Kavokin, J. J. Baumberg, G. Malpuech, and F. P. Laussy, Microcavities (Semiconductor Science and Technology), Oxford University, Oxford (2007).
- E. K. Lindmark, T. R. Nelson, H. M. Gibbs, G. Khitrova, A. V. Kavokine, and M. A. Kaliteevski, Opt. Lett. 21, 994 (1996).
- A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, Phys. Rev. B 57(23), 14877 (1998).
- G. Pozina, C. Hemmingsson, A. V. Belonovski, I. V. Levitskii, M. I. Mitrofanov, E. I. Girshova, K. A. Ivanov, S. N. Rodin, K. M. Morozov, V. P. Evtikhiev, and M. A. Kaliteevski, Phys. Status Solidi A 217, 1900894 (2019).
- A. V. Belonovski, I. V. Levitskii, K. M. Morozov, G. Pozina, and M. A. Kaliteevski, Opt. Express 28(9), 12688 (2020).
- A. V. Belonovski, K. M. Morozov, E. I. Girshova, G. Pozina, and M. A. Kaliteevski, Opt. Express 29(13), 20724 (2021).
- T. C. H. Liew, A. V. Kavokin, T. Ostatnickiy, M. Kaliteevski, I. A. Shelykh, and R. A. Abram, Phys. Rev. B 82, 033302 (2010).
- E. B. Magnusson, I. G. Savenko, and I. A. Shelykh, Phys. Rev. B 84, 195308 (2011).
- W. J. Firth and A. J. Scroggie, Semiconductor Science and Technology 10, 1623 (1996).
- R. Loudon, The Quantum Theory of Light, Clarendon Press, Oxford (1973), p. 184.
- F. P. Laussy, M. M. Glazov, A. Kavokin, D. M. Whittaker, and M. Guillaume, Phys. Rev. B 73(11), 115343 (2006).
- J. P. Reithmaier, Semicond. Sci. Technol. 23(12), 123001 (2008).
- F. P. Laussy, E. del Valle, and C. Tejedor, Phys. Rev. B 79, 235325 (2009).
- С. С. Гаврилов, УФН 190(2), 137 (2020).
- G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).
- M. Amthor, T. C. H. Liew, C. Metzger, S. Brodbeck, L. Worschech, M. Kamp, I. A. Shelykh, A. V. Kavokin, C. Schneider, and S. H¨o ing, Phys. Rev. B 91, 081404 (2015).
- M. A. Kaliteevski, K. A. Ivanov, G. Pozina, and A. J. Gallant, Sci. Rep. 4, 5444 (2014).
- S. S. Demirchyan, T. A. Khudaiberganov, I. Y. Chestnov, and A. P. Alodzhants, Journal of Optical Technology 84(2), 75(2017).
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					