Simulation of the Wave Turbulence of a Liquid Surface Using the Dynamic Conformal Transformation Method
- Autores: Kochurin E.A.1,2
- 
							Afiliações: 
							- Institute of Electrophysics, Russian Academy of Sciences
- Skolkovo Institute of Science and Technology
 
- Edição: Volume 118, Nº 11-12 (12) (2023)
- Páginas: 889-895
- Seção: Articles
- URL: https://cardiosomatics.ru/0370-274X/article/view/664208
- DOI: https://doi.org/10.31857/S1234567823240047
- EDN: https://elibrary.ru/NLPIEG
- ID: 664208
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The dynamic conformal transformation method has been generalized for the first time to numerically simulate the capillary wave turbulence of a liquid surface in the plane symmetric anisotropic geometry. The model is strongly nonlinear and involves effects of surface tension, as well as energy dissipation and pumping. Simulation results have shown that the system of nonlinear capillary waves can pass to the quasistationary chaotic motion regime (wave turbulence). The calculated exponents of spectra do not coincide with those for the classical Zakharov–Filonenko spectrum for isotropic capillary turbulence but are in good agreement with the estimate obtained under the assumption of the dominant effect of five-wave resonant interactions.
Sobre autores
E. Kochurin
Institute of Electrophysics, Russian Academy of Sciences;Skolkovo Institute of Science and Technology
							Autor responsável pela correspondência
							Email: kochurin@iep.uran.ru
				                					                																			                												                								620016, Yekaterinburg, Russia;121205, Moscow, Russia						
Bibliografia
- V. E. Zakharov, G. Falkovich, and V. S. L'vov, Kolmogorov Spectra of Turbulence I: Wave Turbulence, Springer-Verlag, Berlin (1992).
- A. Picozzi, J. Garnier, T. Hansson, P. Suret, S. Randoux, G. Millot, and D. N. Christodoulides, Phys. Rep. 542(1), 1 (2014).
- S. Galtier, J. Phys. A Math. Theor. 51(29), 293001 (2018).
- S. Galtier, S. V. Nazarenko, A. C. Newell, and A. Pouquet, J. Plasma Phys. 63(5), 447 (2000).
- E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, Phys. Rev. E 105(6), L063101 (2022).
- S. Dorbolo and E. Falcon, Phys. Rev. E 83(4), 046303 (2011).
- I. A. Dmitriev, E. A. Kochurin, and N. M. Zubarev, IEEE Trans. Dielectr. Electr. Insul. 304, 1408 (2023).
- В. Е. Захаров, Р. З. Сагдеев, Докл. АН СССР 192(2), 297 (1970)
- V. E. Zakharov and R. Z. Sagdeev, Sov. Phys. Dokl. 15, 439 (1970).
- A. Gri n, G. Krstulovic, V. S. L'vov, and S. Nazarenko, Phys. Rev. Lett. 128, 224501 (2022).
- Е. А. Кочурин, Е. А. Кузнецов, Письма в ЖЭТФ 116(12), 830 (2022)
- E. A. Kochurin and E. A. Kuznetsov, JETP Lett. 116(12), 863 (2022).
- В. Е. Захаров, Н. Н. Филоненко, ПМТФ 8(6), 62 (1967)
- V. E. Zakharov and N. N. Filonenko, J. Appl. Mech. Tech. Phys. 8, 37 (1967).
- A. O. Korotkevich, Phys. Rev. Lett. 130(26), 264002 (2023).
- Z. Zhang and Y. Pan, Phys. Rev. E 106(4), 044213 (2022).
- G. V. Kolmakov, M. Y. Brazhnikov, A. A. Levchenko, L. V. Abdurakhimov, P. V. E. McClintock, and L. P. Mezhov-Deglin, Prog. Low Temp. Phys. 16, 305 (2009).
- E. Falcon and N. Mordant, Annu. Rev. Fluid Mech. 54, 1 (2022).
- A. N. Pushkarev and V. E. Zakharov, Phys. Rev. Lett. 76, 3320 (1996).
- L. Deike, D. Fuster, M. Berhanu, and E. Falcon, Phys. Rev. Lett. 112, 234501 (2014).
- Y. Pan and D. K. P. Yue, Phys. Rev. Lett. 113, 094501 (2014).
- E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, Pis'ma v ZhETF 112(12), 799 (2020)
- E. Kochurin, G. Ricard, N. Zubarev, and E. Falcon, JETP Lett. 112(12), 757 (2020).
- G. Ricard and E. Falcon, Europhys. Lett. 135(6), 64001 (2021).
- S. Nazarenko, Wave turbulence, Springer-Verlag, Berlin (2011), v. 825.
- A. Dyachenko, Y. Lvov, and V. E. Zakharov, Physica D 87, 233 (1995).
- A. O. Korotkevich, A. I. Dyachenko, and V. E. Zakharov, Physica D 321, 51 (2016).
- A. C. Newell and B.Rumpf, Annu. Rev. Fluid Mech. 43, 59 (2011).
- S. Walton and M. B. Tran, SIAM J. Sci.Comput. 45(4), B467 (2023).
- L. V. Ovsjannikov, Arch. Mech. 26, 6 1974.
- A. I. Dyachenko, E. A. Kuznetsov, M. Spector, and V. E. Zakharov, Phys. Lett. A 221, 736 (1996).
- V. E. Zakharov, A. I. Dyachenko, and O. A. Vasilyev, Eur. J. Mech. B Fluids 21, 283 (2002).
- S. Tanveer, Proc. R. Soc. A: Math. Phys. Sci. 435(1893), 137 (1991).
- S. Tanveer, Proc. R. Soc. A: Math. Phys. Sci. 441(1913), 501 (1993).
- S. A. Dyachenko, Stud. Appl. Math. 148(1), 125 (2022).
- В. П. Рубан, ЖЭТФ 157(5), 944 (2020)
- V. P.Ruban, JETP 130, 797 (2020).
- S. Dyachenko and A. C. Newell, Stud. Appl. Math. 137, 199 (2016).
- А. О. Короткевич, А. О. Прокофьев, В. Е. Захаров, Письма в ЖЭТФ 109(5), 312 (2019)
- A. O. Korotkevich, A. Proko ev, and V. E. Zakharov, JETP Lett. 109, 309 (2019).
- A. Nachbin, Physica D 445, 133646 (2023).
- T. Gao, A. Doak, J. M. Vanden-Broeck, and Z. Wang, Eur. J. Mech. B Fluids 77, 98 (2019).
- M. V. Flamarion, T. Gao, R. Ribeiro-Jr, and A. Doak, Phys. Fluids 34, 127119 (2022).
- Е. А. Кочурин, ПМТФ 59(1), 91 (2018)
- E. A. Kochurin, J. Appl. Mech. Tech. Phys. 59, 79 (2018).
- S. Murashige and W. Choi, J.Comput. Phys. 328, 234 (2017).
- J. Shelton, P. Milewski, and P. H. Trinh, J. Fluid Mech. 972, R6 (2023).
- L. Kayal, S. Basak, and R. Dasgupta, J. Fluid Mech. 951, A26 (2022).
- E. Herbert, N. Mordant, and E. Falcon, Phys. Rev. Lett. 105, 144502 (2010).
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 
