Mikhail Bulgakov’s “The Master and Margarita” and Yury Trifonov’s “Preliminary Results”: Parallels and their linguistic analysis
- Authors: Iomdin B.L1, Iomdin M.B2
- 
							Affiliations: 
							- Käthe-Kollwitz-Gymnasium
- Heinrich-Hertz-Gymnasium
 
- Issue: No 5 (2025)
- Pages: 76-90
- Section: Special issue in memory of Leonid L. Iomdin
- URL: https://cardiosomatics.ru/0373-658X/article/view/691098
- DOI: https://doi.org/10.31857/0373-658X.2025.4.76-91
- ID: 691098
Cite item
Abstract
The article compares Mikhail Bulgakov’s novel “The Master and Margarita” with Yury Trifonov’s novella “Preliminary Results”. More than 30 pairs of text fragments are identified in which narrative, stylistic, and lexical similarities emerge. The study attempts to formalise these parallels using several linguistic methods: statistical counts of lexical overlap, analysis of coinciding multi-word fragments, detection of shared low-frequency vocabulary, and automatic measurement of semantic proximity. None of the applied methods reveals a statistically significant influence of one text upon the other. The conclusion discusses the fundamental possibilities of formalising intuitively perceived parallels in works of fiction and outlines potential directions for further research of this kind.
			                About the authors
B. L Iomdin
Käthe-Kollwitz-Gymnasium
														Email: boris@iomdin.com
				                					                																			                												                								Berlin, Germany						
M. B Iomdin
Heinrich-Hertz-Gymnasium
														Email: misha@iomdin.com
				                					                																			                												                								Berlin, Germany						
References
- Gelfond M. M., Mukhina A. A. “The Master and Margarita” and “Doctor Zhivago” in the story “Another life” by Yu. V. Trifonov. The New Philological Bulletin, 2024, 2(69): 181–190.
- Russian National Corpus. http://www.ruscorpora.ru.
- Eder et al. 2016 — Eder M., Rybicki J., Kestemont M. Stylometry with R: A package for computational text analysis. The R Journal, 2016, 8(1): 107–121.
- Neal et al. 2017 — Neal T., Sundararajan K., Fatima A., Yan Y., Xiang Y., Woodard D. Surveying stylometry techniques and applications. ACM Computing Surveys (CSuR), 2017, 50(6): 1–36.
- Savoy 2020 — Savoy J. Machine learning methods for stylometry. Cham: Springer, 2020.
- Timoneda, Vera 2025 — Timoneda J. C., Vera S. V. BERT, RoBERTa or DeBERTa? Comparing Performance Across Transformers Models in Political Science Text. The Journal of Politics 2025, 87(1): 347–364.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 
 Open Access
		                                Open Access Access granted
						Access granted Subscription or Fee Access
		                                							Subscription or Fee Access
		                                					