On the Variation of the Nonlinearity Parameter in the “Super-Twisting” Algorithm
- Авторлар: Fomichev V.V.1,2,3, Vysotskiy A.O.2
- 
							Мекемелер: 
							- Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China
- Lomonosov Moscow State University, Moscow, 119991, Russia
- Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
 
- Шығарылым: Том 59, № 11 (2023)
- Беттер: 1571-1574
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0374-0641/article/view/649458
- DOI: https://doi.org/10.31857/S0374064123110134
- EDN: https://elibrary.ru/PFBOCN
- ID: 649458
Дәйексөз келтіру
Аннотация
We study the stability of a modified (with variation in the nonlinearity parameter) “super-twisting” algorithm. The analysis is based on majorizing the trajectories of the system with an arbitrary nonlinearity parameter by the trajectories of systems of the classical “super-twisting” algorithm. Stability conditions for the modified systems are obtained, as well as estimates for the size of the stability domain depending on system parameters
Авторлар туралы
V. Fomichev
Department of Mathematics, School of Science, Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China; Lomonosov Moscow State University, Moscow, 119991, Russia; Federal Research Center “Computer Science and Control,” Russian Academy of Sciences, Moscow, 119333, Russia
														Email: fomichev@cs.msu.ru
				                					                																			                												                								Ханчжоу, Китай;Москва, Россия						
A. Vysotskiy
Lomonosov Moscow State University, Moscow, 119991, Russia
							Хат алмасуға жауапты Автор.
							Email: vysotskiial@gmail.com
				                					                																			                												                								Москва, Россия						
Әдебиет тізімі
- Емельянов С.В., Коровин С.К., Левантовский Л.В. Новый класс алгоритмов скольжения второго порядка // Мат. моделирование. 1990. Т. 2. № 3. С. 89-100.
- Levant A. Sliding order and sliding accuracy in sliding mode control // Int. J. of Control. 1993. V. 58. P. 1247-1263.
- Moreno J., Osorio M. Strict Lyapounov functions for the super-twisting algorithm // IEEE Trans. on Autom. Contr. 2012. V. 57. P. 1035-1040.
- Seeber R., Horn M. Stability proof for a well-established super-twisting parameter setting // Automatica. 2017. V. 84. P. 241-243.
- Seeber R., Horn M. Necessary and sufficient stability criterion for the super-twisting algorithm // 15th Intern. Workshop on Variable Structure Systems (VSS). 2018. P. 120-125.
- Фомичев В.В., Высоцкий А.О. Критерий устойчивости и точные оценки для алгоритма "супер-скручивания"// Дифференц. уравнения. 2023. Т. 59. № 2. С. 252-256.
Қосымша файлдар
 
				
			 
						 
					 
						 
						 
						

 
  
  
  Мақаланы E-mail арқылы жіберу
			Мақаланы E-mail арқылы жіберу 
 Ашық рұқсат
		                                Ашық рұқсат Рұқсат берілді
						Рұқсат берілді Рұқсат ақылы немесе тек жазылушылар үшін
		                                							Рұқсат ақылы немесе тек жазылушылар үшін
		                                					