Quantum-Chemical Study of C–H Bond Activation in Methane on Ni–Cu Oxide and Sulphide Clusters
- 作者: Bandurist P.S.1, Pichugina D.A.1
- 
							隶属关系: 
							- Lomonosov Moscow State University, Chemistry Department
 
- 期: 卷 64, 编号 4 (2023)
- 页面: 384-393
- 栏目: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/660280
- DOI: https://doi.org/10.31857/S0453881123040019
- EDN: https://elibrary.ru/RQLTWX
- ID: 660280
如何引用文章
详细
Density functional theory (DFT) (PBE) was used for modeling of C–H bond breaking in methane on Ni–Cu clusters enriched in copper as the first stage of catalytic dry reforming of methane. Nanosized clusters NiCu11S6(PH3)8, NiCu11S6, NiCu11O6(PH3)8, NiCu11O6 are considered as catalyst models. The binding energy for methane with clusters was calculated and the activation energy of the \({\text{CH}}_{4}^{*}\) → \({\text{CH}}_{3}^{*}\) + H* step was determined. Based on the data obtained, it was found that the NiCu11O6 catalytic system is the most promising for CH4 activation both in kinetic (activation energy is 99 kJ/mol) and thermodynamic (step energy change is –29 kJ/mol) aspects. To assess the stability of the NiCu11O6 cluster towards coke formation, CH adsorption followed by dissociation (CH* → C* + H*) was modeled. The calculated value of the activation energy of this step is rather high, 159 kJ/mol.
作者简介
P. Bandurist
Lomonosov Moscow State University, Chemistry Department
							编辑信件的主要联系方式.
							Email: banduristpavel@gmail.com
				                					                																			                												                								Russia, 119991, Moscow, Leninskiye Gory, 1/3						
D. Pichugina
Lomonosov Moscow State University, Chemistry Department
														Email: banduristpavel@gmail.com
				                					                																			                												                								Russia, 119991, Moscow, Leninskiye Gory, 1/3						
参考
- Olivos-Suarez A.I., Szécsényi À., Hensen E.J.M., Ruiz-Martinez J., Pidko E.A., Gascon J. // ACS Catal. 2016. V. 6. P. 2965. https://doi.org/10.1021/acscatal.6b00428
- Franz R., Uslamin E.A., Pidko E.A. // Mendeleev Commun. 2021. V. 31. P. 584. https://doi.org/10.1016/j.mencom.2021.09.002
- Wang L., Wang F. // Energy Fuels. 2022. V. 36. P. 5594. https://doi.org/10.1021/acs.energyfuels.2c01007
- Wittich K., Krämer M., Bottke N., Schunk S.A. // ChemCatChem. 2020. V. 12. P. 2130. https://doi.org/10.1002/cctc.201902142
- de Medeiros F.G.M., Lopes F.W.B., de Vasconcelos B.R. // Catalysts. 2022. V. 12. P. 363. https://doi.org/10.3390/catal12040363
- le Saché E., Reina T.R. // Prog. Energy Combust. Sci. 2022. V. 89. P. 100970. https://doi.org/10.1016/j.pecs.2021.100970
- Zhang G., Liu J., Xu Y., Sun Y. // Int. J. Hydrog. Energy. 2018. V. 43. P. 15030. https://doi.org/10.1016/j.ijhydene.2018.06.091
- Parsapur R.K., Chatterjee S., Huang K.-W. // ACS Energy Lett. 2020. V. 5. P. 2881. https://doi.org/10.1021/acsenergylett.0c01635
- Садыков В.А., Симонов М.Н., Беспалко Ю.Н., Боброва Л.Н., Еремеев Н.Ф., Арапова М.В., Смаль Е.А., Мезенцева Н.В., Павлова С.Н. // Кинетика и катализ. 2019. Т. 60. № 5. С. 588. (Sadykov V.A., Simonov M.N., Bespalko Y.N., Bobrova L.N., Eremeev N.F., Arapova M.V., Smal’ E.A., Mesentseva N.V., Pavlova S.N. // Kinet. Catal. 2019. V. 60. № 5. P. 582. https://doi.org/10.1134/S002315841905008210.1134/S0023158419050082)https://doi.org/10.1134/S0453881119050095
- Song Y., Ozdemir E., Ramesh S., Adishev A., Subramanian S., Harale A., Albuali M., Fadhel B.A., Jamal A., Moon D., Choi S.H., Yavuz C.T. // Science. V. 367. 2020. P. 777. https://doi.org/10.1126/science.aav2412
- Le Saché E., Pastor-Perez L., Watson D., Sepulveda-Escribano A., Reina T.R. // Appl. Catal. B: Env. 2018. V. 236. P. 458. https://doi.org/10.1016/j.apcatb.2018.05.051
- Волнина Э.А., Кипнис М.А. // Кинетика и катализ. 2020. Т. 61. № 1. С. 107. https://doi.org/ (Volnina E.A., Kipnis M.A. // Kinet. Catal. 2020. V. 61. № 1. P. 119. https://doi.org/10.1134/S002315842001011510.1134/S0023158420010115)https://doi.org/10.31857/S045388112001013X
- Álvarez A., Bansode A., Urakawa A., Bavykina A.V., Wezendonk T.A., Makkee M., Gascon J., Kapteijn F. // Chem. Rev. 2017. V. 117. P. 9804. https://doi.org/10.1021/acs.chemrev.6b00816
- Mahmoudi H., Mahmoudi M., Doustdar O., Jahangiri H., Tsolakis A., Gu S., Wyszynski M.L. // Biofuels Eng. 2017. V. 2. P. 11. https://doi.org/10.1515/bfuel-2017-0002
- Pakhare D., Spivey J. // Chem. Soc. Rev. 2014. V. 43. P. 7813. https://doi.org/10.1039/C3CS60395D
- Rezaei M., Alavi S.M., Sahebdelfar S., Yan Z.F. // J. Nat. Gas. Chem. 2006. V. 15. P. 327. https://doi.org/10.1016/S1003-9953(07)60014-0
- Barama S., Dupeyrat-Batiot C., Capron M., Bordes-Richard E., Bakhti-Mohammedi O. // Catal. Today. 2009. V. 141. P. 385. https://doi.org/10.1016/j.cattod.2008.06.025
- Ferreira-Aparicio P., Guerrero-Ruiz A., Rodriquez-Ramos I. // Appl. Catal. A: Gen. 1998. V. 170. P. 177. https://doi.org/10.1016/S0926-860X(98)00048-9
- Hou Z., Chen P., Fang H., Zheng X., Yashima T. // Int. J. Hydrog. Energy. 2006. V. 31. P. 555. https://doi.org/10.1016/j.ijhydene.2005.06.010
- Aramouni N.A.K., Touma J.G., Tarboush B.A., Zeaiter J., Ahmad M.N. // Renew. Sustain. Energy Rev. 2018. V. 82. P. 2570. https://doi.org/10.1016/j.rser.2017.09.076
- Abdulrasheed A., Jalil A.A., Gambo Y., Ibrahim M., Hambali H.U., Shahul Hamid M.Y. // Renew. Sustain. Energy Rev. 2019. V. 108. P. 175. https://doi.org/10.1016/j.rser.2019.03.054
- Goula M.A., Charisiou N.D., Siakavelas G., Tzounis L., Tsiaoussis I., Panagiotopoulou P., Goula G., Yentekakis I.V. // Int. J. Hydrog. Energy. 2017. V. 42. P. 13724. https://doi.org/10.1016/j.ijhydene.2016.11.196
- Zhang W.D., Liu B.S., Tian Y.L. // Catal. Comm. 2007. V. 8. P. 661. https://doi.org/10.1016/j.catcom.2006.08.020
- Yu X., Zhang F., Chu W. // RSC Adv. 2016 V. 6. P. 70 537. https://doi.org/10.1039/C6RA12335J
- le Saché E., Johnson S., Pastor-Perez L., Horri B.A., Reina T.R. // Energies. 2019. V. 12. P. 1007. https://doi.org/10.3390/en12061007
- Song Z., Wang Q., Guo C., Li S., Yan W., Jiao W., Qiu L., Yan X., Li R. // Ind. Eng. Chem. Res. 2020. V. 59. P. 17 250. https://doi.org/10.1021/acs.iecr.0c01204
- Crisafulli C., Scirè S., Maggiore R., Minicò S., Galvagno S. // Catal. Let. 1999. V. 59. P. 21. https://doi.org/10.1023/A:1019031412713
- García-Diéguez M., Pieta I.S., Herrera M.C., Larrubia M.A., Alemany L.J. // Catal. Today. 2011. V. 172. P. 136. https://doi.org/10.1016/j.cattod.2011.02.012
- Mahoney E.G., Pusel J.M., Stagg-Williams S.M., Faraji S. // J. CO2 Util. 2014. V. 6. P. 40. https://doi.org/10.1016/j.jcou.2014.01.003
- Huang T., Huang W., Huang J., Ji P. // Fuel Process. Technol. 2011. V. 92. P. 1868. https://doi.org/10.1016/j.fuproc.2011.05.002
- Chatla A., Ghouri M.M., El Hassan O.W., Mohamed N., Prakash A.V., Elbashir N.O. // Appl. Catal. A: Gen. 2020. V. 602. P. 117699. https://doi.org/10.1016/j.apcata.2020.117699
- Franz R., Pinto D., Uslamin E.A., Urakawa A., Pidko E.A. // ChemCatChem. 2021. V. 13. P. 5034. https://doi.org/10.1002/cctc.202101080
- Franz R., Kühlewind T., Shterk G., Abou-Hamad E., Parastaev A., Uslamin E., Hensen E.J.M., Kapteijn F., Gascon J., Pidko E.A. // Catal. Sci. Technol. 2020. V. 10. P. 3965. https://doi.org/10.1039/D0CY00817F
- Zhang X., Vajglova Z., Mäki-Arvela P., Peurla M., Palonen H., Murzin D.Yu., Tungatarova S.A., Baizhumanova T.S., Aubakirov Y.A. // ChemistrySelect. 2021. V. 6. P. 3424. https://doi.org/10.1002/slct.202100686
- Gawande M.B., Goswami A., Felpin F.-X., Asefa T., Huang X., Silva R., Zou X., Zboril R., Varma R.S. // Chem. Rev. 2016. V. 116. P. 3722. https://doi.org/10.1021/acs.chemrev.5b00482
- Wang M., Fu Z., Yang Z. // Phys. Lett. A. 2013. V. 377. P. 2189. https://doi.org/10.1016/j.physleta.2013.05.054
- An W., Zeng X.C., Turner C.H. // J. Chem. Phys. 2009. V. 131. P. 174702. https://doi.org/10.1063/1.3254383
- Omran A., Yoon S.H., Khan M., Ghouri M., Chatla A., Elbashir N. // Catalysts. 2020. V. 10. P. 1043. https://doi.org/10.3390/catal10091043
- Qiu H., Ran J., Niu J., Guo F., Ou Z. // Mol. Catal. 2021. V. 502. P. 111360. https://doi.org/10.1016/j.mcat.2020.111360
- Liu H., Zhang R., Yan R., Li J., Wang B., Xie K. // Appl. Surf. Sci. 2012. V. 258. P. 8177. https://doi.org/10.1016/j.apsusc.2012.05.017
- Zhang R., Guo X., Wang B., Ling L. // J. Phys. Chem. C. 2015. V. 119. P. 14135. https://doi.org/10.1021/acs.jpcc.5b03868
- Xiao Z., Hou F., Zhang J., Zheng Q., Xu J., Pan L., Wang L., Zou J., Zhang X., Li G. // ACS Appl. Mater. Interfaces. 2021. V. 13. P. 48838. https://doi.org/10.1021/acsami.1c14918
- Lee J.-H., Lee E.-G., Joo O.-S., Jung K.-D. // Appl. Catal. A: Gen. 2004. V. 269. P. 1. https://doi.org/10.1016/j.apcata.2004.01.035
- Chen H.-W., Wang C.-Y., Yu C.-H., Tseng L.-T., Liao P.-H. // Catal. Today. 2004. V. 97. P. 173. https://doi.org/10.1016/j.cattod.2004.03.067
- Wu T., Cai W., Zhang P., Song X., Gao L. // RSC Adv. 2013. V. 3. P. 23976. https://doi.org/10.1039/c3ra43203c
- Li B., Xu Z., Jing F., Luo S., Wang N., Chu W. // J. Energy Chem. 2016. V. 25. P. 1078. https://doi.org/10.1016/j.jechem.2016.11.001
- Nataj S.M.M, Alavi S.M., Mazloom G. // J. Energy Chem. 2018. V. 27. P. 1475. https://doi.org/10.1016/j.jechem.2017.10.002
- Song K., Lu M., Xu S., Chen C., Zhan Y., Li D., Au C., Jiang L., Tomishige K. // Appl. Catal. B: Env. 2018. V. 239. P. 324. https://doi.org/10.1016/j.apcatb.2018.08.023
- Rezaei R., Moradi G., Sharifnia S. // Energy Fuels. 2019. V. 33. P. 6689. https://doi.org/10.1021/acs.energyfuels.9b00692
- Yang Y., Lin Y.-A., Yan X., Chen F., Shen Q., Zhang L., Yan N. // ACS Appl. Energy Mater. 2019. V. 2. P. 8894. https://doi.org/10.1021/acsaem.9b01923
- Han K., Wang S., Liu Q., Wang F. // ACS Appl. Nano Mater. 2021. V. 4. P. 5340. https://doi.org/10.1021/acsanm.1c00673
- Han K., Wang S., Hu N., Shi W., Wang F. // ACS Appl. Mater. Interfaces. 2022. V. 14. P. 23487. https://doi.org/10.1021/acsami.2c03757
- Rahemi N., Haghighi M., Babaluo A.A., Allahyari S., Jafari M.F. // Energy Convers. Manag. 2014. V. 84. P. 50. https://doi.org/10.1016/j.enconman.2014.04.016
- Wu T., Zhang Q., Cai W., Zhang P., Song X., Sun Z., Gao L. // Appl. Catal. A: Gen. 2015. V. 503. P. 94. https://doi.org/10.1016/j.apcata.2015.07.012
- Bian Z., Das S., Wai M.H., Hongmanorom P., Kawi S. // ChemPhysChem. 2017. V. 18. P. 3117. https://doi.org/10.1002/cphc.201700529
- Kolganov A.A., Gabrienko A.A., Chernyshov I.Yu., Stepanov A.G. Pidko E.A. // Phys. Chem. Chem. Phys. 2022. V. 24. P. 6492. https://doi.org/10.1039/D1CP05854A
- Dehnen S., Schläfer A., Fenske D., Ahlrichs R. // Angew. Chem. 1994. V. 106. P. 786. https://doi.org/10.1002/ange.19941060713
- Dehnen S., Fenske D., Deveson A.C. // J. Clust. Sci. 1996. V. 7. P. 351. https://doi.org/10.1007/BF01171188
- Пичугина Д.А., Кузьменко Н.Е., Шестаков А.Ф. // Успехи химии. 2015. Т. 84. С. 1114. (Pichugina D.A., Kuz’menko N.E., Shestakov A.F. // Russ. Chem. Rev. 2015. V. 84. P. 1114. )https://doi.org/10.1070/RCR4493
- Perdew J.P., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. P. 9982. https://doi.org/10.1063/1.472933
- Laikov D.N. // Chem. Phys. Lett. 2005. V. 416. P. 116. https://doi.org/10.1016/j.cplett.2005.09.046
- Schlegel H.B. // J. Comput. Chem. 1982. V. 3. P. 214. https://doi.org/10.1002/jcc.540030212
- Лайков Д.Н., Устынюк Ю.А. // Изв. АН. Сер. хим. 2005. № 3. С. 804. (Laikov D.N., Ustynyuk Yu.A. // Russ. Chem. Bull. 2005. № 3. P. 820.)
- Chen T., Fang L., Luo W., Meng Y., Xue J., Xia S., Ni Z. // Chem. J. Chin. Univ. 2019. V. 40. P. 2135. https://doi.org/10.7503/cjcu20190267
- Zhang L., Meng Y., Yang J., Shen H., Yang C., Xie B., Xia S. // Fuel. 2021. V. 303. P. 121263. https://doi.org/10.1016/j.fuel.2021.121263
补充文件
 
				
			 
						 
						 
						 
						 
					

 
  
  
  电邮这篇文章
			电邮这篇文章 
 开放存取
		                                开放存取 ##reader.subscriptionAccessGranted##
						##reader.subscriptionAccessGranted## 订阅或者付费存取
		                                							订阅或者付费存取
		                                					



