Effect of the Composition and Synthesis Procedure of the Catalysts Based on the CoAl-Hydroxides on their Properties in Furfural Hydrogenation
- Autores: Kobzar E.О.1, Stepanova L.N.1, Leont’eva N.N.1, Gulyaeva T.I.1, Trenikhin M.V.1, Lavrenov A.V.1
- 
							Afiliações: 
							- Center of New Chemical Technologies, Boreskov Institute of Catalysis
 
- Edição: Volume 64, Nº 4 (2023)
- Páginas: 474-485
- Seção: 7-я Международная школа-конференция молодых ученых “Катализ: от науки к промышленности”
- URL: https://cardiosomatics.ru/0453-8811/article/view/660323
- DOI: https://doi.org/10.31857/S0453881123040056
- EDN: https://elibrary.ru/RQUMCJ
- ID: 660323
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
CoAl-hydroxides with Co/Al = 2 and 4 were synthesized by traditional coprecipitation method and mechanochemical route. Structure properties of the samples on the all preparation stages of the catalysts, the transformations occurred during cobalt reduction from corresponding oxides, textural characteristics of calcined and reduced samples, as well as size, morphology and composition of the particles that formed after high temperature treatments were studied in detailed. It was established, that synthesis procedure of CoAl-hydroxides has a significant impact on phase composition and properties of obtained systems. The phase of layered double hydroxide formed only when using coprecipitation method. The mechanochemical approach allowed to obtained the materials with higher specific surface area. According to TEM data, the samples prepared by coprecipitation (after oxidative and reductive treatments) had a “core-shell” structure where metallic atoms of Co were in core and shell consisted of CoAl-spinel. The samples synthesized by mechanochemical route had Co nanoparticles with high dispersion on the surface. The catalysts based on CoAl-systems prepared by mechanochemical method were more active in the furfural hydrogenation. Conversion of furfural achieved 97% for the sample with Co/Al = 4. Herewith, selectivity of furfural formation for all studied catalysts was almost 100% irrespective of synthesis procedure and Co/Al ratio.
Palavras-chave
Sobre autores
E. Kobzar
Center of New Chemical Technologies, Boreskov Institute of Catalysis
							Autor responsável pela correspondência
							Email: kbzlena@ihcp.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
L. Stepanova
Center of New Chemical Technologies, Boreskov Institute of Catalysis
							Autor responsável pela correspondência
							Email: Lchem@yandex.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
N. Leont’eva
Center of New Chemical Technologies, Boreskov Institute of Catalysis
														Email: Lchem@yandex.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
T. Gulyaeva
Center of New Chemical Technologies, Boreskov Institute of Catalysis
														Email: Lchem@yandex.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
M. Trenikhin
Center of New Chemical Technologies, Boreskov Institute of Catalysis
														Email: Lchem@yandex.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
A. Lavrenov
Center of New Chemical Technologies, Boreskov Institute of Catalysis
														Email: Lchem@yandex.ru
				                					                																			                												                								Russia, 644040, Omsk, 54 Neftezavodskaya Street						
Bibliografia
- Ekpeni L.E.N., Benyounis K.Y., Nkem-Ekpeni F., Stokes J., Olabi A.G. // Energy Procedia. 2014. V. 61. P. 1740.
- Bozell J.J., Petersen G.R. // Green Chem. 2010. V. 12. № 4. P. 539.
- Yan K., Wu G., Lafleur T., Jarvis C. // Renew. Sustain. Energy Rev. 2014. V. 38. P. 663.
- Mishra D.K., Kumar S., Shukla R.S. // Biomass, Biofuels, Biochemicals. 2020. P. 323.
- Bremner J.G.M., Keeys R.K.F. // J. Chem. Soc. 1947. P. 1068.
- Fulajtárova K., Soták T., Hronec M., Vávra I., Dobročka E., Omastová M. // Appl. Catal. A. 2015. V. 502. P. 78.
- Mironenko R.M., Belskaya O.B., Talsi V.P., Likholobov V.A. // J. Catal. 2020. V. 389. P. 721.
- Taylor M.J., Durndell L.J., Isaacs M.A., Parlett C.M.A., Wilson K., Lee A.F., Kyriakou G. // Appl. Catal. B: Env. 2016. V. 180. P. 580.
- Bhogeswararao S., Srinivas D. // J. Catal. 2015. V. 327. P. 65.
- Audemar M., Ciotonea C., De Oliveira Vigier K., Royer S., Ungureanu A., Dragoi B., Dumitriu E., Jérôme F. // ChemSusChem. 2015. V. 8. № 11. P. 1885.
- Jiang P., Li X., Gao W., Wang X., Tang Y., Lan K., Wang B., Li R. // Catal. Commun. 2018. V. 111. P. 6.
- Gong W., Chen C., Zhang H., Wang G., Zhao H. // Catal. Sci. Technol. 2018. V. 8. № 21. P. 5506.
- Chen X., Li H., Luo H., Qiao M. // Appl. Catal. A: Gen. 2002. V. 233. P. 13.
- Srivastava S., Mohanty P., Parikh J.K., Dalai A.K., Amritphale S.S., Khare A.K. // Chin. J. Catal. 2015. V. 36. № 7. P. 933.
- Mironenko R.M., Likholobov V.A., Belskaya O.B. // Russ. Chem. Rev. 2022. V. 91. № 1. RCR5017.
- Mascolo G., Mascolo M.C. // Micropor. Mesopor. Mater. 2015. V. 214. P. 246.
- Sulmonetti T.P., Pang S.H., Claure M.T., Lee S., Cullen D.A., Agrawal P.K., Jones C.W. // Appl. Catal. A: Gen. 2016. V. 517. P. 187.
- Bertolini G.R., Jiménez-Gómez C.P., Cecilia J.A., Maireles-Torres P. // Catalysts. 2020. V. 10. № 5. P. 486.
- Wu J., Gao G., Li J., Sun P., Long X., Li F. // Appl. Catal. B: Env. 2017. V. 203. P. 227.
- Wang T., Hu A., Wang H., Xia Y. // J. Chin. Chem. Soc. 2019. V. 66. № 12. P. 1610.
- Shao Y., Wang J., Sun K., Gao G., Li C., Zhang L., Zhang S., Xu L., Hu G., Hu X. // Renew. Energy. 2021. V. 170. P. 1114.
- Rudolf C., Dragoi B., Ungureanu A., Chirieac A., Royer S., Nastro A., Dumitriu E. // Catal. Sci. Technol. 2014. V. 4. № 1. P. 179.
- Biabani-Ravandi A., Rezaei M., Fattah Z. // Proc. Saf. Environ. Prot. 2013. V. 91. № 6. P. 489.
- Степанова Л.Н., Бельская О.Б., Василевич А.В., Леонтьева Н.Н., Бакланова О.Н., Лихолобов В.А. // Кинетика и катализ. 2018. Т. 59. № 4. С. 506. (Stepanova L.N., Belskaya O.B., Vasilevich A.V., Leont’eva N.N., Baklanova O.N., Likholobov V.A. // Kinet. Catal. 2018. V. 59. № 4. P. 521.)
- Lee S.-B., Ko E.-H., Park J.Y., Oh J.-M. // Nanomater. 2021. V. 11. № 5. P. 1153.
- Bukhtiyarova M.V. // J. Solid State Chem. 2018. V. 269. P. 494.
- Tongamp W., Zhang Q., Saito F. // Powder Technol. 2008. V. 185. № 1. P. 43.
- Khusnutdinov V.P., Isupov V.P. // Inorg. Mater. 2008. V. 44. № 3. P. 263.
- Stepanova L.N., Kobzar E.O., Leont’eva N.N., Gulyaeva T.I., Vasilevich A.V., Babenko A.V., Serkova A.N., Salanov A.N., Belskaya O.B. // J. Alloys Compd. 2021. V. 890. P. 161902.
- Wang B., Qu J., Li X., He X., Zhang Q. // J. Am. Ceram. Soc. 2016. V. 99. № 9. P. 2882.
- Zhang X., Li S. // Appl. Surf. Sci. 2013. V. 274. P. 158.
- Zhu J., Zeng B., Mo L., Jin F., Deng M., Zhang Q. // Appl. Clay Sci. 2021. V. 206. P. 106070.
- Ay A.N., Zümreoglu-Karan B., Mafra L. // Z. Anorg. Allg. Chem. 2009. V. 635. № 9. P. 1470.
- Teodorescu F., Slabu A.I., Pavel O.D., Zăvoianu R. // Catal. Commun. 2019. V. 133. P. 105829.
- Kobzar E.O., Stepanova L.N., Leont’eva N.N., Belskaya O.B. // AIP Conf. Proc. 2020. V. 2310. 030010.
- Ferencz Z., Kukovecz Á., Kónya Z., Sipos P., Pálinkó I. // Appl. Clay Sci. 2015. V. 112. P. 94.
- Ferencz Z., Szabados M., Ádok-Sipiczki M., Kukovecz Á., Kónya Z., Sipos P., Pálinkó I. // J. Mater. Sci. 2014. V. 49. № 24. P. 8478.
- Qu J., He X., Chen M., Huang P., Zhang Q., Liu X. // J. Solid State Chem. 2017. V. 250. P. 1.
- Qu J., He X., Li X., Ai Z., Li Y., Zhang Q., Liu X. // RSC Adv. 2017. V. 7. № 50. P. 31466.
- Ferencz Z., Szabados M., Varga G., Csendes Z., Kuko-vecz Á., Kónya Z., Carlson S., Sipos P., Pálinkó I. // J. Solid State Chem. 2016. V. 233. P. 236.
- Qu J., He X., Chen M., Hu H., Zhang Q., Liu X. // Mater. Chem. Phys. 2017. V. 191. P. 173.
- Qu J., He X., Wang B., Zhong L., Wan L., Li X., Song S., Zhang Q. // Appl. Clay Sci. 2016. V. 120. P. 24.
- Stepanova L.N., Belskaya O.B., Vasilevich A.V., Gulyaeva T.I., Leont’eva N.N., Serkova A.N., Salanov A.N., Likholobov V.A. // Catal. Today. 2019. V. 357. P. 638.
- Stepanova L.N., Belskaya O.B., Baklanova O.N., Vasilevich A.V., Likholobov V.A. // Procedia Eng. 2016. V. 152. P. 672.
- Stepanova L.N., Mironenko R.M., Kobzar E.O., Leont’eva N.N., Gulyaeva T.I., Vasilevich A.V., Serkova A.N., Salanov A.N., Lavrenov A.V. // ACS Sustain. Chem. Eng. 2022. V. 3. № 4. P. 400.
- Wang Y., Miao Y., Li S., Gao L., Xiao G. // Mol. Catal. 2017. V. 436. P. 128.
- Chen X., Li H., Luo H., Qiao M. // Appl. Catal. A. 2002. V. 233. № 1. P. 13.
- Arnoldy P., Moulijn J.A. // J. Catal. 1985. V. 93. № 1. P. 38.
- Ribet S., Tichit D., Coq B., Ducourant B., Morato F. // J. Solid State Chem. 1999. V. 142. № 2. P. 382.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 





