Effect of manganese or copper on catalytic properties of CeO2-SiO2 in the preferential oxidation of CO in excess of hydrogen (PROX-СО)
- Autores: Kaplin I.Y.1, Boltkov E.1, Efimenko L.A.1, Lokteva E.S.1, Isaikina O.Y.1, Maslakov K.I.1, Kamaev A.O.1, Golubina E.V.1
- 
							Afiliações: 
							- Lomonosov Moscow State University
 
- Edição: Volume 65, Nº 3 (2024): Специальный номер посвящен памяти Олега Наумовича Темкина
- Páginas: 302-316
- Seção: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/660339
- DOI: https://doi.org/10.31857/S0453881124030038
- EDN: https://elibrary.ru/RVWXBG
- ID: 660339
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The work is directed to identifying the effect of copper or manganese oxide additives on the catalytic properties of the CeO2–SiO2 (CeSi) system containing silicon dioxide as a textural promoter in the preferential oxidation of carbon monoxide in excess hydrogen (PROX-CO). The CeSi catalyst was prepared by precipitation from salts in the presence of cetyltrimethylammonium bromide template, 5 wt % MnOx/CeSi and 5 wt % CuOх/CeSi were obtained by precipitation of modifiers from salts in the presence of potassium carbonate. The catalytic efficiency in PROX-CO increases in the series CeSi > Mn/CeSi > Cu/CeSi (at 200°C the time-averaged CO conversion values are 5, 19 and 78%, CO2 selectivity values are 100, 65 and 59%). Characterization by X-ray diffraction, scanning electron microscopy, low-temperature nitrogen adsorption-desorption, Raman spectroscopy, X-ray photoelectron spectroscopy and temperature-programmed reduction with hydrogen demonstrated, that the presence of SiO2 promotes the formation of highly dispersed and easily reduced CuOx clusters in close contact with CeO2 particles, uniformly distributed over CeSi, and containing Cu+ adsorption centers. The Mn/CeSi system is characterized by an uneven distribution of manganese on the surface, a low number of MnOx-CeO2 contacts, and a low reduction ability of MnOx in the low-temperature range (50–100°C).
Palavras-chave
Texto integral
 
												
	                        Sobre autores
I. Kaplin
Lomonosov Moscow State University
							Autor responsável pela correspondência
							Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0002-5091-6290
				                																			                								
PhD, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991E. Boltkov
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                					                																			                								
student, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991L. Efimenko
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                					                																			                								
student, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991E. Lokteva
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0003-3510-4822
				                																			                								
Doctor of Chemical Sciences, Associate Professor, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991O. Isaikina
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0002-4165-6562
				                																			                								
PhD, Associate Professor, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991K. Maslakov
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0002-0672-2683
				                																			                								
PhD, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991A. Kamaev
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0002-6648-0647
				                																			                								
Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991E. Golubina
Lomonosov Moscow State University
														Email: kaplinigormsu@gmail.com
				                	ORCID ID: 0000-0002-1040-1428
				                																			                								
Doctor of Chemical Sciences, Associate Professor, Chemistry Department
Rússia, Leninskie Gory, 1, building 3, Moscow, 119991Bibliografia
- Hassan Q., Sameen A.Z., Salman H.M., Jaszczur M., Al-Jiboory A.K. // J. Energy Storage. 2023. V. 72. P. 108404.
- Rolo I., Costa V.A.F., Brito F.P. // Energies. 2023. V. 17. № 1. P. 180.
- Hjeij D., Biçer Y., Koç M. // Int. J. Hydrogen Energy. 2022. V. 47. № 8. P. 4977.
- Wang K., Men Y., Liu W., Zhang J. // Int. J. Hydrogen Energy. 2023. V. 48. № 64. P. 25100.
- Lu J., Wang J., Zou Q., He D., Zhang L., Xu Z., He S., Luo Y. // ACS Catal. 2019. V. 9. № 3. P. 2177.
- Kaplin I.Y., Lokteva E.S., Maslakov K.I., Tikhonov A.V., Kharlanov A.N., Fionov A.V., Kamaev A.O., Isaikina O.Y., Maksimov S.V., Golubina E.V. // Appl. Surf. Sci. 2022. V. 594. P. 153473.
- Davó-Quiñonero A., Bailón-García E., López-Rodríguez S., Juan-Juan J., Lozano-Castelló D., García-Melchor M., Herrera F.C., Pellegrin E., Escudero C., Bueno-López A. // ACS Catal. 2020. V. 10. № 11. P. 6532.
- Chen Y., Lin J. // Int. J. Hydrogen Energy. 2023. V. 48. № 64. P. 24788.
- Sahebdelfar S., Ravanchi M.T. // Int. J. Hydrogen Energy. 2023. V.48. № 64. P. 24709.
- Montini T., Melchionna M., Monai M., Fornasiero P. // Chem. Rev. 2016. V. 116. № 10. P. 5987.
- Konsolakis M. // Appl. Catal. B: Environ. 2016. V. 198. P. 49.
- Ayastuy J.L., Gurbani A., González-Marcos M.P., Gutiérrez-Ortiz M.A. // Int. J. Hydrogen Energy. 2010. V. 35. № 3. P. 1232.
- Guo X., Li J., Zhou R. // Fuel. 2016. V. 163. P. 56.
- Maciel C.G., Silva T.D.F., Hirooka M.I., Belgacem M.N., Assaf J.M. // Fuel. 2012. V. 97. P. 245.
- Tang C., Sun J., Yao X., Cao Y., Liu L., Ge C., Gao F., Dong L. // Appl. Catal. B: Environ. 2014. V. 146. P. 201.
- Golubina E.V., Kaplin I.Y., Gorodnova A.V., Lokteva E.S., Isaikina O.Y., Maslakov K.I. // Molecules. 2022. V. 27. № 18. P. 6095.
- Galtayries A., Sporken R., Riga J., Blanchard G., Caudano R. // J. Electron Spectros. Relat. Phenomena. 1998. V. 88–91. P. 951.
- Lee S.Y., Mettlach N., Nguyen N., Sun Y.M., White J.M. // Appl. Surf. Sci. 2003. V. 206. № 1–4. P. 102.
- Abi-aad E., Bechara R., Grimblot J., Aboukais A. // Chem. Mater. 1993. V. 5. № 6. P. 793.
- Mullins D.R., Overbury S.H., Huntley D.R. // Surf. Sci. 1998. V. 409. № 2. P. 307.
- Royer S., Duprez D. // ChemCatChem. 2011. V. 3. № 1. P. 24.
- Wan J., Tao F., Shi Y., Shi Z., Liu Y., Wu G., Kan J., Zhou R. // Chem. Eng. J. 2022. V. 433. № 3. P. 133.
- Schmitt R., Nenning A., Kraynis O., Korobko R., Frenkel A.I., Lubomirsky I., Haile S.M., Rupp J.L.M. // Chem. Soc. Rev. 2020. V. 49. № 2. P. 554.
- Shannon R.D., Prewitt C.T. // Acta Crystallogr. Sect. B. Struct. Crystallogr. Cryst. Chem. 1969. V. 25. № 5. P. 925.
- McBride J.R., Hass K.C., Poindexter B.D., Weber W.H. // J. Appl. Phys. 1994. V. 76. № 4. P. 2435.
- Kainbayev N., Sriubas M., Virbukas D., Rutkuniene Z., Bockute K., Bolegenova S., Laukaitis G. // Coating. 2020. V. 10. № 5. P. 432.
- Sal’nikov V.V., Pikalova E.Y. // Phys. Solid State. 2015. V. 57. № 10. P. 1944.
- Loridant S. // Catal. Today. 2021. V. 373. P. 98.
- Sartoretti E., Novara C., Giorgis F., Piumetti M., Bensaid S., Russo N., Fino D. // Sci. Rep. 2019. V. 9. № 1. P. 3875.
- Kaplin I.Y., Lokteva E.S., Golubina E.V., Shishova V.V., Maslakov K.I., Fionov A.V., Isaikina O.Y., Lunin V.V. // Appl. Surf. Sci. 2019. V. 485. P. 432.
- Fazio B., Spadaro L., Trunfio G., Negro J., Arena F. // J. Raman Spectrosc. 2011. V. 42. № 7. P. 1583.
- Bernardini S., Bellatreccia F., Della Ventura G., Sodo A. // Geostand. Geoanal. Res. 2021. V. 45. № 1. P. 223.
- Taniguchi T., Watanabe T., Sugiyama N., Subramani A.K., Wagata H., Matsushita N., Yoshimura M. // J. Phys. Chem. C. 2009. V. 113. № 46. P. 19789.
- Giordano F., Trovarelli A., De Leitenburg C., Giona M. // J. Catal. 2000. V. 193. № 2. P. 273.
- Yao H.C., Yao Y.F.Y. // J. Catal. 1984. V. 86. № 2. P. 254.
- Guntida A., Suriye K., Panpranot J., Praserthdam P. // Top. Catal. 2018. V. 61. № 15–17. P. 1641.
- Wu X., Liu S., Weng D., Lin F., Ran R. // J. Hazard. Mater. 2011. V. 187. № 1–3. P. 283.
- Stobbe E.R., De Boer B.A., Geus J.W. // Catal. Today. 1999. V. 47. № 1–4. P. 161.
- Wang Z., Shen G., Li J., Liu H., Wang Q., Chen Y. // Appl. Catal. B: Environ. 2013. V. 138–139. P. 253.
- Kaplin I.Y., Lokteva E.S., Bataeva S. V., Maslakov K.I., Fionov A.V., Shumyantsev A.V., Isaikina O.Y., Kamaev A.O., Golubina E.V. // Pure Appl. Chem. 2021. V. 93. № 4. P. 447.
- Khaskheli A.A., Xu L., Liu D. // Energy Fuels. 2022. V. 36. № 14. P. 7362.
- Ye Z., Liu Y., Nikiforov A., Ji J., Zhao B., Wang J. // Chemosphere. 2023. V. 336. P. 139130.
- Miranda Cruz A.R., Assaf E.M., Gomes J.F., Assaf J.M. // Catal. Today. 2021. V. 381. P. 42.
- Martínez-Munuera J.C., Giménez-Mañogil J., Yeste M.P., Hungría A.B., Cauqui M.A., García-García A., Calvino J.J. // Appl. Surf. Sci. 2022. V. 575. P. 151717.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




