Structural Kinetic Model and Mechanism of Methylcyclohexane Dehydrogenation over Pt,Sn/γ-Al2O3 Catalyst
- Autores: Lozhkin А.D.1,2, Katsman E.A.1, Bruk L.G.1
- 
							Afiliações: 
							- MIREA – Russian Technological University
- Hydrogen Technologies Center LLC
 
- Edição: Volume 65, Nº 4 (2024)
- Páginas: 493-504
- Seção: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/684235
- DOI: https://doi.org/10.31857/S0453881124040106
- EDN: https://elibrary.ru/RHKRGV
- ID: 684235
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The kinetic regularities of methylcyclohexane dehydrogenation into toluene and hydrogen on the supported Pt,Sn/γ-Al2O3 catalyst in the gas phase have been studied in detail. Based on the results of kinetic experiments, using the advancement and discrimination of hypotheses, an adequate structural kinetic model of the reversible process has been created. It is based on a mechanism that includes four routes involving the bifunctional active center of the catalyst and its two adsorption complexes: with hydrogen and with toluene.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
А. Lozhkin
MIREA – Russian Technological University; Hydrogen Technologies Center LLC
							Autor responsável pela correspondência
							Email: promchemie@gmail.com
				                					                																			                												                	Rússia, 							Moscow; Moscow						
E. Katsman
MIREA – Russian Technological University
														Email: promchemie@gmail.com
				                					                																			                												                	Rússia, 							Moscow						
L. Bruk
MIREA – Russian Technological University
														Email: lgbruk@mail.ru
				                					                																			                												                	Rússia, 							Moscow						
Bibliografia
- Okada Y., Sasaki E., Watanabe E., Hyodo S., Nishijima H. // Int. J. Hydrogen Energy. 2006. V. 31. P. 1348.
- Kustov L.M., Kalenchuk A.N., Bogdan V.I. // Russ. Chem. Rev. 2020. V. 89. № 9. Р. 897.
- Lozhkin A.D., Iskhakova L.D., Milovich F.O., Katsman E.A., Bruk L.G. // Kinet. Catal. 2024. V. 65. № 3. P. 280.
- Pande J., Shukla A., Biniwale R. // Int. J. Hydrogen Energy. 2012. V. 37. P. 6756.
- Kou Z., Zhi Z., Xu G., An Y., He C. Appl. Catal. A: Gen. 2013. V. 467. P. 196.
- Li J., Chai Y., Liu B., Wu Y., Li X., Tang Z., Liu Y., Liu C. // Appl. Catal. A: Gen. 2014. V. 469. P. 434.
- Ping H., Xu G., Wu S. // Int. J. Hydrogen Energy. 2015. V. 40. P. 15923.
- Kreuder H., Boeltken T., Cholewa M., Meier J., Pfeifer P. // Int. J. Hydrogen Energy. 2016. V. 41. P. 12082.
- Tuo Y., Shi L., Cheng H., Zhu Y., Yang M., Xu J., Han Y., Li P., Yuan W. // J. Catal. 2018. V. 360. P. 175.
- Boufaden N., Akkari R., Pawelec B., Fierro J.L.G., Said Zina M., Ghorbel A. // J. Mol. Catal. A: Chem. 2016. V. 420. P. 96.
- Xia K., Lang W., Li P., Yan X., Guo Y. // J. Catal. 2016. V. 338. P. 104.
- Xia Z., Lu H., Liu H., Zhang Z., Chen Y. // Catal. Commun. 2017. V. 90. P. 39.
- Nakano A., Manabe S., Higo T., Seki H., Nagatake S., Yabe T., Ogo S., Nagatsuka T., Sugiura Y., Iki H., Sekine Y. // Appl. Catal. A: Gen. 2017. V. 543. P. 75.
- Li B., Xu Z., Jing F., Luo S., Wang N., Chu W. // Appl. Catal. A: Gen. 2017. V. 533. P. 17.
- Deng L., Arakawa T., Ohkubo T., Miura H., Shishido T., Hosokawa S., Teramura K., Tanaka T. // Ind. Eng. Chem. Res. 2017. V. 56. P. 7160.
- Xia Z., Liu H., Lu H., Zhang Z., Chen Y. // Appl. Surf. Sci. 2017. V. 422. P. 905.
- Yu J., Ge Q., Fang W., Xu H. // Int. J. Hydrogen Energy. 2011. V. 36. P. 11536.
- Dong A., Wang K., Zhu S., Yang G., Wang X. // Fuel Process Technol. 2017. V. 158. P. 218.
- Du J., Zhao R., Jiao G. // Int. J. Hydrogen Energy. 2013. V. 38. P. 5789.
- Li X., Tuo Y., Jiang H., Duan X., Yu X., Li P. // Int. J. Hydrogen Energy. 2015. V. 40. P. 12217.
- Shi L., Liu X., Tuo Y., Xu J., Li P. // Int. J. Hydrogen Energy. 2017. V. 42. P. 17403.
- Kariya N., Fukuoka A., Ichikawa M. // Appl. Catal. A: Gen. 2002. V. 233. P. 91.
- Scherer G.W.H., Newson E., Wokaun A. // Int. J. Hydrogen Energy. 1999. V. 24. P. 1157.
- Sinfelt J.H. // J. Mol. Catal. A. Chem. 2000. V. 163. P. 123.
- Akram M.S., Aslam R., Alhumaidan F.S., Usman M.R. // Int. J. Chem. Kinet. 2020. V. 52. P. 415.
- Alhumaidan F., Cresswell D., Garforth A. // Ind. Eng. Chem. Res. 2011. V. 50. P. 2509.
- Usman M.S. Kinetics of Methylcyclohexane Dehydrogenation and Reactor Simulation for “On-board” Hydrogen Storage. PhD Thesis. The University of Manchester, 2010. 299 p.
- Gorskii V.G., Katsman E.A., Klebanova F.D., Grigorev A.A. // Theor. Exp. Chem. 1987. V. 23. P. 181.
- Темкин О.Н., Брук Л.Г., Зейгарник А.В. // Кинетика и катализ. 1993. T. 34. C. 445.
- Fischer A., Iglesia E. Mechanistic Interpretations and Consequences of Hydrogen Spillover in Toluene Hydrogenation Catalysis. AIChE Annual Meeting, 2018.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 


