Composite photocatalysts g-C3N4/TiO2 for hydrogen production and dye decomposition
- Authors: Zhurenok A.V.1, Sushnikova A.A.2, Valeeva A.A.3, Kurenkova A.Y.1, Mishchenko D.D.1,4, Kozlova E.A.1,2, Rempel’ A.A.2
- 
							Affiliations: 
							- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
- Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Boreskov Institute of Catalysis
 
- Issue: Vol 65, No 2 (2024)
- Pages: 137-147
- Section: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/660333
- DOI: https://doi.org/10.31857/S0453881124020043
- EDN: https://elibrary.ru/DXLYVD
- ID: 660333
Cite item
Abstract
The photocatalytic activity of the g-C3N4 /TiO2 composite samples in the processes of dye (methylene blue) decomposition and hydrogen evolution from an aqueous ethanol solution under the action of visible radiation (400 nm) has been studied. A new original method for the synthesis of the g-C3N4 /TiO2 composite by depositing g-C3N4 /TiO2 to TiO2 nanoparticles during sol-gel synthesis is proposed. The synthesized photocatalysts were characterized by X-ray diffraction, low-temperature gas adsorption, X-ray photoelectron spectroscopy, high-resolution transmission microscopy, and diffuse reflectance spectroscopy in the UV and visible regions. The maximum activity in the hydrogen evolution reaction was 1.3 mmol h–1, which exceeds the rate of hydrogen evolution on the unmodified g-C3N4 and TiO2 samples.
Keywords
Full Text
 
												
	                        About the authors
A. V. Zhurenok
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090						
A. A. Sushnikova
Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Amundsena st., 101, Yekaterinburg, 620016						
A. A. Valeeva
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Pervomayskaya st., 91, Yekaterinburg, 620990						
A. Yu. Kurenkova
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090						
D. D. Mishchenko
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Boreskov Institute of Catalysis
														Email: kozlova@catalysis.ru
				                					                																			                								
Multiaccess Center “SKIF“
Russian Federation, Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Nikolskii pr., 5, Koltsovo, 630559E. A. Kozlova
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
							Author for correspondence.
							Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Amundsena st., 101, Yekaterinburg, 620016						
A. A. Rempel’
Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Russian Federation, 							Amundsena st., 101, Yekaterinburg, 620016						
References
- Sun W., Zhu J., Zhang M., Meng X., Chen M., Feng Y., Chen X., Ding Y. // Chin. J. Catal. 2022. V. 43. P. 2273.
- Zhang S., Wang K., Li F., Ho S.H. // Int. J. Hydrogen Energy. 2022. V. 47. P. 37517.
- Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L, Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. P. 214331.
- Любина Т.П., Козлова Е.А. // Кинетика и катализ. 2012. Т. 53. № 2. С. 197. (Lyubina T.P., Kozlova E.A. // Kinet. Catal. 2012. V. 53. № 2. P. 188).
- Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Kurenkova A.Y., Saraev А., Schroettner H., Rempel А. // Int. J. Hydrogen Energy. 2021. V. 46. P. 16917.
- Rempel A.A., Valeeva A.A. // Russ. Chem. Bull. 2019. V. 68. P. 2163.
- Valeeva A.A., Rempel A.A., Rempel S.V., Sadovnikov S.I., Gusev A.I. // Russ. Chem. Rev. 2021. V. 90. P. 601.
- Yang H. // Mater. Res. Bull. 2021. V. 142. P. 111406.
- Su Y.W., Lin W.H., Hsu Y.J., Wei K.H. // Small. 2014. V. 10. P. 4427.
- Patial S., Raizada P., Hasija V., Singh P., Thakur V.K., Nguyen V.H. // Mater. Today Energy. 2021. V. 19. P. 100589.
- Xu J., Shen J., Jiang H., Yu X., Ahmad Qureshi W., Maouche C,; Gao J., Yang J., Liu Q. // J. Ind. Eng. Chem. 2023. V. 119. P. 112.
- Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin G.A.N., Hidayat S., Takei T., Kumada N., Rahayu I. // Nanomater. 2023. V.13. P. 704.
- Rafique M., Hajra S., Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. // ACS Omega. 2023. V. 8. P. 25640.
- Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. // Russ. Chem. Rev. 2021. V. 90. P. 1397.
- Dorosheva I.B., Valeeva A.A., Rempel A.A., Trestsova M.A., Utepova I.A., Chupakhin O.N. // Inorg. Mater. 2021. V. 57. P. 503.
- Fujishima A., Rao T.N., Tryk D.A. // J. Photochem. Photobiol. C: Photochem. Rev. 2000. V. 1. P. 1.
- Yan H., Wang X., Yao M., Yao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. P. 402.
- Qiang W., Qu X., Chen C., Zhang L., Sun D. // Mater. Today Commun. 2022. V. 33. 104216.
- Cheng Y., Gao J., Shi Q., Li Z., Huang W. // J. Alloys Compd. 2022. V. 901. P. 163562.
- Ansari F., Sheibani S., Fernandez-García M. // J. Alloys Compd. 2022. V. 919. P. 165864.
- Yin Z., Zhang X., Yuan X., Wei W., Xiao Y., Cao S. // J. Clean. Prod. 2022. V. 375. P. 134112.
- Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C. // J. Photochem. Photobiol. C: Photochem. Rev. 2015. V. 25. P. 1.
- Tang Z., Xu L., Shu K., Yang J., Tang H. // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 642. P. 128686.
- Sabir M., Rafiq K., Abid M.Z., Quyyum U., Shah S.S.A., Faizan M., Rauf A., Iqbal S., Hussain E. // Fuel. 2023. V. 353. P. 129196.
- Luo T., Sun X., Ma D., Wang G., Yang F., Zhang Y., Huang J., Zhang H., Wang J., Peng F. // J. Phys. Chem. C. 2023. V. 127. P. 1372.
- Shi Q., Zhang X., Li Z., Raza A., Li G. // ACS Appl. Mater. Interfaces. 2023. V. 15. P. 30161.
- Zhang H., Su T., Yu S., Liao W., Ren W., Zhu Z., Yang K., Len C., Dong G., Zhao D., Lü H. // Mol. Catal. 2023. V. 536. P. 112916.
- Priya B.A., Sivakumar T., Venkateswari P. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 6646.
- Li Y., He Z., Liu L., Jiang Y., Ong W.J., Duan Y., Ho W., Dong F. // Nano Energy. 2023. V. 105. P. 108032.
- Wang J., Wang S. // Coord. Chem. Rev. 2022. V. 453. P. 214338.
- Dong G., Zhang Y., Pan Q., Qiu J. // J. Photochem. Photobiol. C: Photochem. Rev. 2014. V. 20. P. 33.
- Sun Y., Kumar V., Kim K.H. // Sep. Purif. Technol. 2023. V. 305. P. 122413.
- Kozlova E.A., Valeeva A.A., Sushnikova A.A., Zhurenok A.V., Rempel A.A. // Nanosyst. Phys. Chem. Math. 2022. V. 13. P. 632.
- Fina F., Callear S.K., Carins G.M., Irvine J.T.S. // Chem. Mater. 2015. V. 27. P. 2612.
- Qiu P., Chen H., Xu C., Zhou N., Jiang F., Wang X., Fu Y.J. // Mater. Chem. A. 2015. V. 3. P. 24237.
- Tang C., Cheng M., Lai C., Li L., Yang X., Du L., Zhang G., Wang G., Yang L. // Coord. Chem. Rev. 2023. V. 474. P. 214846.
- Mai W., Wen F., Xie D., Leng Y., Mu Z. // J. Adv. Ceram. 2014. V. 3. P. 49.
- Kaichev V.V., Chesalov Y.A., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2016. V. 338. P. 82.
- Kaichev V.V., Popova G.Y., Chesalov Y.A., Saraev A.A., Zemlyanov D.Y., Beloshapkin S.A., Knop-Gericke A., Schlögl R., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2014. V. 311. P. 59.
- Finetti P., Sedona F., Rizzi G.A., Mick U., Sutara F., Svec M., Matolin V., Schierbaum K., Granozzi G. // J. Phys. Chem. C. 2007. V. 111. P. 869.
- Hasegawa Y., Ayame A. // Catal. Today. 2001. V. 71. P. 177.
- Luan Z., Maes E.M., Van Der Heide P.A.W., Zhao D., Czernuszewicz R.S., Kevan L. // Chem. Mater. 1999. V. 11. P. 3680.
- Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 11392.
- Liu H., Chen D., Wang Z., Jing H., Zhang R. // Appl. Catal. B: Environ. 2017. V. 203. P. 300.
- Kumar Singh A., Das C., Indra A. // Coord. Chem. Rev. 2022. V. 465. P. 214516.
- Alcudia-Ramos M.A., Fuentez-Torres, M.O., Ortiz-Chi F., Espinosa-González C.G., Hernández Como N., García-Zaleta D.S., Kesarla M.K., Torres-Torres J.G., Collins-Martínez V., Godavarthi S. // Ceram. Int. 2020. V. 46. P. 38.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



