Composite photocatalysts g-C3N4/TiO2 for hydrogen production and dye decomposition
- Autores: Zhurenok A.V.1, Sushnikova A.A.2, Valeeva A.A.3, Kurenkova A.Y.1, Mishchenko D.D.1,4, Kozlova E.A.1,2, Rempel’ A.A.2
- 
							Afiliações: 
							- Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
- Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
- Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
- Boreskov Institute of Catalysis
 
- Edição: Volume 65, Nº 2 (2024)
- Páginas: 137-147
- Seção: ARTICLES
- URL: https://cardiosomatics.ru/0453-8811/article/view/660333
- DOI: https://doi.org/10.31857/S0453881124020043
- EDN: https://elibrary.ru/DXLYVD
- ID: 660333
Citar
Texto integral
 Acesso aberto
		                                Acesso aberto Acesso está concedido
						Acesso está concedido Acesso é pago ou somente para assinantes
		                                							Acesso é pago ou somente para assinantes
		                                					Resumo
The photocatalytic activity of the g-C3N4 /TiO2 composite samples in the processes of dye (methylene blue) decomposition and hydrogen evolution from an aqueous ethanol solution under the action of visible radiation (400 nm) has been studied. A new original method for the synthesis of the g-C3N4 /TiO2 composite by depositing g-C3N4 /TiO2 to TiO2 nanoparticles during sol-gel synthesis is proposed. The synthesized photocatalysts were characterized by X-ray diffraction, low-temperature gas adsorption, X-ray photoelectron spectroscopy, high-resolution transmission microscopy, and diffuse reflectance spectroscopy in the UV and visible regions. The maximum activity in the hydrogen evolution reaction was 1.3 mmol h–1, which exceeds the rate of hydrogen evolution on the unmodified g-C3N4 and TiO2 samples.
Palavras-chave
Texto integral
 
												
	                        Sobre autores
A. Zhurenok
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090						
A. Sushnikova
Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Amundsena st., 101, Yekaterinburg, 620016						
A. Valeeva
Institute of Solid State Chemistry, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Pervomayskaya st., 91, Yekaterinburg, 620990						
A. Kurenkova
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090						
D. Mishchenko
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Boreskov Institute of Catalysis
														Email: kozlova@catalysis.ru
				                					                																			                								
Multiaccess Center “SKIF“
Rússia, Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Nikolskii pr., 5, Koltsovo, 630559E. Kozlova
Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences; Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
							Autor responsável pela correspondência
							Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Acad. Lavrentiev pr., 5, Novosibirsk, 630090; Amundsena st., 101, Yekaterinburg, 620016						
A. Rempel’
Institute of Metallurgy, Ural Branch, Russian Academy of Sciences
														Email: kozlova@catalysis.ru
				                					                																			                												                	Rússia, 							Amundsena st., 101, Yekaterinburg, 620016						
Bibliografia
- Sun W., Zhu J., Zhang M., Meng X., Chen M., Feng Y., Chen X., Ding Y. // Chin. J. Catal. 2022. V. 43. P. 2273.
- Zhang S., Wang K., Li F., Ho S.H. // Int. J. Hydrogen Energy. 2022. V. 47. P. 37517.
- Yakushev A.A., Abel A.S., Averin A.D., Beletskaya I.P., Cheprakov A.V., Ziankou I.S., Bonneviot L, Bessmertnykh-Lemeune A. // Coord. Chem. Rev. 2022. V. 458. P. 214331.
- Любина Т.П., Козлова Е.А. // Кинетика и катализ. 2012. Т. 53. № 2. С. 197. (Lyubina T.P., Kozlova E.A. // Kinet. Catal. 2012. V. 53. № 2. P. 188).
- Valeeva A.A., Dorosheva I.B., Kozlova E.A., Sushnikova A.A., Kurenkova A.Y., Saraev А., Schroettner H., Rempel А. // Int. J. Hydrogen Energy. 2021. V. 46. P. 16917.
- Rempel A.A., Valeeva A.A. // Russ. Chem. Bull. 2019. V. 68. P. 2163.
- Valeeva A.A., Rempel A.A., Rempel S.V., Sadovnikov S.I., Gusev A.I. // Russ. Chem. Rev. 2021. V. 90. P. 601.
- Yang H. // Mater. Res. Bull. 2021. V. 142. P. 111406.
- Su Y.W., Lin W.H., Hsu Y.J., Wei K.H. // Small. 2014. V. 10. P. 4427.
- Patial S., Raizada P., Hasija V., Singh P., Thakur V.K., Nguyen V.H. // Mater. Today Energy. 2021. V. 19. P. 100589.
- Xu J., Shen J., Jiang H., Yu X., Ahmad Qureshi W., Maouche C,; Gao J., Yang J., Liu Q. // J. Ind. Eng. Chem. 2023. V. 119. P. 112.
- Eddy D.R., Permana M.D., Sakti L.K., Sheha G.A.N., Solihudin G.A.N., Hidayat S., Takei T., Kumada N., Rahayu I. // Nanomater. 2023. V.13. P. 704.
- Rafique M., Hajra S., Irshad M., Usman M., Imran M., Assiri M.A., Ashraf W.M. // ACS Omega. 2023. V. 8. P. 25640.
- Rempel A.A., Valeeva A.A., Vokhmintsev A.S., Weinstein I.A. // Russ. Chem. Rev. 2021. V. 90. P. 1397.
- Dorosheva I.B., Valeeva A.A., Rempel A.A., Trestsova M.A., Utepova I.A., Chupakhin O.N. // Inorg. Mater. 2021. V. 57. P. 503.
- Fujishima A., Rao T.N., Tryk D.A. // J. Photochem. Photobiol. C: Photochem. Rev. 2000. V. 1. P. 1.
- Yan H., Wang X., Yao M., Yao X. // Prog. Nat. Sci. Mater. Int. 2013. V. 23. P. 402.
- Qiang W., Qu X., Chen C., Zhang L., Sun D. // Mater. Today Commun. 2022. V. 33. 104216.
- Cheng Y., Gao J., Shi Q., Li Z., Huang W. // J. Alloys Compd. 2022. V. 901. P. 163562.
- Ansari F., Sheibani S., Fernandez-García M. // J. Alloys Compd. 2022. V. 919. P. 165864.
- Yin Z., Zhang X., Yuan X., Wei W., Xiao Y., Cao S. // J. Clean. Prod. 2022. V. 375. P. 134112.
- Etacheri V., Di Valentin C., Schneider J., Bahnemann D., Pillai S.C. // J. Photochem. Photobiol. C: Photochem. Rev. 2015. V. 25. P. 1.
- Tang Z., Xu L., Shu K., Yang J., Tang H. // Colloids Surf. A: Physicochem. Eng. Asp. 2022. V. 642. P. 128686.
- Sabir M., Rafiq K., Abid M.Z., Quyyum U., Shah S.S.A., Faizan M., Rauf A., Iqbal S., Hussain E. // Fuel. 2023. V. 353. P. 129196.
- Luo T., Sun X., Ma D., Wang G., Yang F., Zhang Y., Huang J., Zhang H., Wang J., Peng F. // J. Phys. Chem. C. 2023. V. 127. P. 1372.
- Shi Q., Zhang X., Li Z., Raza A., Li G. // ACS Appl. Mater. Interfaces. 2023. V. 15. P. 30161.
- Zhang H., Su T., Yu S., Liao W., Ren W., Zhu Z., Yang K., Len C., Dong G., Zhao D., Lü H. // Mol. Catal. 2023. V. 536. P. 112916.
- Priya B.A., Sivakumar T., Venkateswari P. // J. Mater. Sci. Mater. Electron. 2022. V. 33. P. 6646.
- Li Y., He Z., Liu L., Jiang Y., Ong W.J., Duan Y., Ho W., Dong F. // Nano Energy. 2023. V. 105. P. 108032.
- Wang J., Wang S. // Coord. Chem. Rev. 2022. V. 453. P. 214338.
- Dong G., Zhang Y., Pan Q., Qiu J. // J. Photochem. Photobiol. C: Photochem. Rev. 2014. V. 20. P. 33.
- Sun Y., Kumar V., Kim K.H. // Sep. Purif. Technol. 2023. V. 305. P. 122413.
- Kozlova E.A., Valeeva A.A., Sushnikova A.A., Zhurenok A.V., Rempel A.A. // Nanosyst. Phys. Chem. Math. 2022. V. 13. P. 632.
- Fina F., Callear S.K., Carins G.M., Irvine J.T.S. // Chem. Mater. 2015. V. 27. P. 2612.
- Qiu P., Chen H., Xu C., Zhou N., Jiang F., Wang X., Fu Y.J. // Mater. Chem. A. 2015. V. 3. P. 24237.
- Tang C., Cheng M., Lai C., Li L., Yang X., Du L., Zhang G., Wang G., Yang L. // Coord. Chem. Rev. 2023. V. 474. P. 214846.
- Mai W., Wen F., Xie D., Leng Y., Mu Z. // J. Adv. Ceram. 2014. V. 3. P. 49.
- Kaichev V.V., Chesalov Y.A., Saraev A.A., Klyushin A.Y., Knop-Gericke A., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2016. V. 338. P. 82.
- Kaichev V.V., Popova G.Y., Chesalov Y.A., Saraev A.A., Zemlyanov D.Y., Beloshapkin S.A., Knop-Gericke A., Schlögl R., Andrushkevich T.V., Bukhtiyarov V.I. // J. Catal. 2014. V. 311. P. 59.
- Finetti P., Sedona F., Rizzi G.A., Mick U., Sutara F., Svec M., Matolin V., Schierbaum K., Granozzi G. // J. Phys. Chem. C. 2007. V. 111. P. 869.
- Hasegawa Y., Ayame A. // Catal. Today. 2001. V. 71. P. 177.
- Luan Z., Maes E.M., Van Der Heide P.A.W., Zhao D., Czernuszewicz R.S., Kevan L. // Chem. Mater. 1999. V. 11. P. 3680.
- Dong F., Zhao Z., Xiong T., Ni Z., Zhang W., Sun Y., Ho W.K. // ACS Appl. Mater. Interfaces. 2013. V. 5. P. 11392.
- Liu H., Chen D., Wang Z., Jing H., Zhang R. // Appl. Catal. B: Environ. 2017. V. 203. P. 300.
- Kumar Singh A., Das C., Indra A. // Coord. Chem. Rev. 2022. V. 465. P. 214516.
- Alcudia-Ramos M.A., Fuentez-Torres, M.O., Ortiz-Chi F., Espinosa-González C.G., Hernández Como N., García-Zaleta D.S., Kesarla M.K., Torres-Torres J.G., Collins-Martínez V., Godavarthi S. // Ceram. Int. 2020. V. 46. P. 38.
Arquivos suplementares
 
				
			 
						 
						 
					 
						 
						 
									

 
  
  
  Enviar artigo por via de e-mail
			Enviar artigo por via de e-mail 




