Immunoassay using full-length and phage antibodies for antibiotic detection
- Authors: Guliy O.I.1, Dykman L.A.1
-
Affiliations:
- Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
- Issue: Vol 60, No 4 (2024)
- Pages: 325-339
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674537
- DOI: https://doi.org/10.31857/S0555109924040016
- EDN: https://elibrary.ru/SBJQUY
- ID: 674537
Cite item
Abstract
The widespread use of antibiotics, leading to antibiotic resistance and the appearance of antibiotics in the environment and food, stimulates the development of new methods for monitoring antibacterial drugs in environmental objects. One of the promising areas for the development of methods for determining antibiotics belongs to sensor technologies. The key point in the development of sensory systems is the selection of a sensitive (recognizing) element. One of the most popular methods for recognizing antibiotics is the use of antibodies. The work presents the main immunosensory systems based on recording the “antigen-antibody” interaction and shows the advantages and disadvantages of polyclonal and monoclonal antibodies. The possibility of using phage antibodies to determine of antibiotics is described separately.
Keywords
Full Text

About the authors
O. I. Guliy
Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
Author for correspondence.
Email: guliy_olga@mail.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
Russian Federation, Saratov, 410049L. A. Dykman
Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences
Email: dykman_l@ibppm.ru
Institute of Biochemistry and Physiology of Plants and Microorganisms
Russian Federation, Saratov, 410049References
- Pauter K., Szultka-Młyńska M., Buszewski B. // Molecules 2020. V. 25. 2556. https://doi.org/10.3390/molecules25112556
- Новые методы иммуноанализа / Ред. У.П. Коллинз, М.: Мир, 1991. 279 с. (Complementary Immunoassays / Ed. Collins, W.P., Chichester: Wiley&Sons, 1988.)
- Mukhametova L.I., Eremin S.A. // Front. Biosci. (Elite Ed). 2024. V. 16. 4. https://doi.org/10.31083/j.fbe1601004
- Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson, T.P. et al. // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 5649–5654. https://doi.org/10.1073/pnas.1503141112
- Ayankojo A.G., Reut J., Nguyen V.B.C., Boroznjak R., Syritski V. // Biosensors. 2022. V. 12. 441. https://doi.org/10.3390/bios12070441
- Ko E.-B., Hwang K.-A., Choi K.-C. // Reprod. Toxicol. 2019. V. 90. P. 15–23. https://doi.org/10.1016/j.reprotox.2019.08.006
- Fungo G.B.N., Uy J.C.W., Porciuncula K.L.J., Candelario C.M.A., Chua D.P.S., Gutierrez T.A.D. et al. // Phage 2023. V. 4. P. 55–67. https://doi.org/10.1089/phage.2023.0007
- Соколова O. // Животноводство России. 2021. № 7. С. 34–36.
- Кирничная В.К., Касьяненко Г.Р., Киселева Т.В. // Пищевая промышленность. 2013. № 9. С. 60–63.
- Zhang X., Wang J., Wu Q., Li L., Wang Y., Yang H. // Molecules 2019. V. 24. 1902. https://doi.org/10.3390/molecules24101902
- Кулапина Е.Г., Баринова О.В., Кулапина О.И., Утц И.А., Снесарев С.В. // Антибиотики и химиотерапия. 2009. Т. 54. С. 53–60.
- Guliy O.I., Zaitsev B.D., Borodina I.A. In: Nanobioanalytical Approaches to Medical Diagnostics. / Eds. P.K. Maurya, P. Chandra. Sawston: Woodhead Publishing, 2022. Р. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
- Thévenot D.R., Toth K., Durst R.A., Wilson G.S. // Biosens. Bioelectron. 2001. V. 16. P. 121–131. https://doi.org/10.1016/s0956-5663(01)00115-4
- Leca-Bouvier B.D., Blum L.J. Recognition Receptors in Biosensors / Ed M. Zourob. New York: Springer, 2010. P. 177–220. https://doi.org/10.1007/978-1-4419-0919-0_4
- Moreira F., Dutra R., Noronha J., Sales G. // Biosens. Bioelectron. 2014. V. 56. P. 217–222. https://doi.org/10.1016/j.bios.2013.12.052
- Dezhakam E., Tavakkol M., Kafili T., Nozohouri E., Naseri A., Khalilzadeh B., Rahbarghazi R. // Food Chem. 2024. V. 439. 138145. https://doi.org/10.1016/j.foodchem.2023.138145
- Reder-Christ K., Bendas G. // Sensors 2011. V. 11. P. 9450–9466. https://doi.org/10.3390/s111009450
- Ahmed S., Ning J., Peng D., Chen T., Ahmad I., Ali et al. // Food Agric. Immunol. 2020. V. 31. P. 268–290. https://doi.org/10.1080/09540105.2019.1707171
- Rudenko N., Fursova K., Shepelyakovskaya A., Karatovskaya A., Brovko F. // Sensors. 2021. V. 21. 7614. https://doi.org/10.3390/s21227614
- Lu N., Chen J., Rao Z., Guo B., Xu Y. // Biosensors 2023. V. 13. 850. https://doi.org/10.3390/bios13090850
- Gaudin V. // Biosens Bioelectron. 2017. V. 90. P. 363–377. https://doi.org/10.1016/j.bios.2016.12.005
- Fernandez F., Hegnerova K., Piliarik M., Sanchez-Baeza F., Homola J., Marco M.P. // Biosens Bioelectron. 2010. V. 26. P. 1231–1238. https://doi.org/10.1016/j.bios.2010.06.012
- Fernandez F., Pinacho D.G., Sanchez-Baeza F., Marco M.P. // J. Agric. Food Chem. 2011. V. 59. P. 5036–5043. https://doi.org/10.1021/jf1048035
- Pollap A., Kochana J. // Biosensors. 2019. V. 9. 61. https://doi.org/0.3390/bios9020061
- Антитела. Методы / Ред. Д. Кэтти. М.: Мир, 1991.
- Sharma S., Byrne H., O’Kennedy R.J. // Essays Biochem. 2016. V. 60. P. 9–18. https://doi.org/10.1042/EBC20150002
- Petrenko V.A. // Viruses 2018. V. 10. 311. https://doi.org/10.3390/v10060311
- Тикунова Н.В., Морозова В.В. // Acta Nat. 2009. Т. 1. С. 22–31. https://doi.org/10.32607/20758251-2009-1-3-20-28.
- Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
- Xiao X., Hu S., Lai X., Peng J., Lai W. // Trends Food Sci. Technol. 2021. V. 111. P. 68–88. https://doi.org/10.1016/j.tifs.2021.02.045
- Arnold D., Somogyi A. // J. Assoc. Off. Anal. Chem. 1985. V. 68. P. 984-990.
- Самсонова Ж.В., Рубцова M.Ю., Чикишева Л.В., Егоров A.M. // Вестн. Моск. Ун-та. Сер. 2. Химия. 2002. Т. 43. С. 396–398.
- Федотова Е.С., Щербаков А.А., Сидоркин В.А., Староверов С.А., Дыкман Л.А., Василенко О.А. // Ветеринария 2007. № 6. C. 57–58.
- Дыкман, Л.А., Сумарока, М.В., Староверов, С.А., Зайцева, И.С., Богатырев, В.А. // Известия РАН. Сер. биол. 2004. Т. 31. C. 86–91.
- Дыкман Л.А., Староверов С.А., Богатырев В.А., Щеголев С.Ю. // Российские нанотехнологии. 2010. Т. 5. С. 58–68. https://doi.org/10.1134/S1995078010110029
- Sui J.X., Lin H., Cao L.M., Li Z.X. // Food Agr. Immunol. 2009. V. 20. P. 125–137. https://doi.org/10.1080/09540100902889936
- Cao L., Sui J., Kong D., Li Z., Lin H. // Food Anal. Methods. 2011. V. 4. P. 517–524. https://doi.org/10.1007/s12161-011-9196-2
- Sui J., Lin H., Xu Y., Cao L. // Food Anal. Methods 2011. V. 4. P. 245–250. https://doi.org/10.1007/s12161-010-9137-5
- Gunther M., Saxinger L., Gray M., LeGatt D. // Ann. Pharmacother. 2013. V. 47. e19. https://doi.org/10.1345/aph.1R566
- Islam R., Luu H.T.L., Kuss S. // J. Electrochem. Soc. 2020. V. 167. 045501. https://doi.org/0.1149/1945-7111/ab6ff3
- Raykova M.R., Corrigan D.K., Holdsworth M., Henriquez F.L., Ward A.C. // Biosensors. 2021. V. 11. 232. https://doi.org/0.3390/bios11070232
- Que X., Chen X., Fu L., Lai W., Zhuang J., Chen G., Tang D. // J. Electroanal. Chem. 2013. V. 704. P. 111–117. https://doi.org/10.1016/j.jelechem.2013.06.023
- Yadav A.K., Verma D., Lakshmi G.B.V.S., Eremin S., Solanki P.R. // Food Chem. 2021. V. 363. 130245. https://doi.org/10.1016/j.foodchem.2021.130245
- Stevenson H.S., Shetty S.S., Thomas N.J., Dhamu V.N., Bhide A., Prasad S. // ACS Omega 2019. V. 4. P. 6324−6330. https://doi.org/10.1021/acsomega.8b03534
- Tomassetti M., Angeloni R., Martini E., Castrucci M., Campanella L. // Sens. Actuators B Chem. 2018. V. 255. P. 1545–1552. https://doi.org/10.1016/j.snb.2017.08.166
- El-Moghazy A.Y., Zhao C., Istamboulie G., Amaly N., Si Y., Noguer T., Sun G. // Biosens. Bioelectron. 2018. V. 117. P 838–844. https://doi.org/10.1016/j.bios.2018.07.025
- Liu X., Zheng S., Hu Y., Li Z., Luo F., He Z. // Food Anal. Methods 2016. V. 9. P. 2972–2978. https://doi.org/10.1007/s12161-016-0480-z
- Li H., Xu B., Wang D., Zhou Y., Zhang H., Xia W., Xu S., Li Y. // J. Biotechnol. 2015. V. 203. P. 97–103. https://doi.org/10.1016/j.jbiotec.2015.03.013
- Conzuelo F., Gamella M., Campuzano S., Reviejo A.J., Pingarrón J.M. // Anal. Chim. Acta 2012. V. 737. P. 29–36. https://doi.org/10.1016/j.aca.2012.05.051
- Merola G., Martini E., Tomassetti M., Campanella L. // J. Pharm. Biomed. Anal. 2015. V. 106. P. 186–196. https://doi.org/10.1016/j.jpba.2014.08.005
- Faridah S., Hazana R., Gayah A. R., Norzaili Z., Azima A., Nur Azura M. S., Zamri I. // Mal. J. Anim. Sci. 2012. V. 15. P. 67–80.
- Шинко Е.И., Фарафонова О.В., Ермолаева Т.Н. // Заводская лаборатория. Диагностика материалов. 2021. Т. 87. С. 11–16. https://doi.org/10.26896/1028-6861-2021-87-12-12-17
- Shinko E.I., Farafonova O.V., Shanin I.A., Eremin S.A., Ermolaeva T.N. // Anal. Lett. 2022. V. 55. P. 1164–1177 https://doi.org/10.1080/00032719.2021.1991364
- Bizina E.V., Farafonova O.V., Zolotareva N.I., Grazhulene S.S., Ermolaeva T.N. // J. Anal. Chem. 2022. V. 77. P. 458–465. https://doi.org/10.1134/S1061934822040049
- Hassani E.A.E.,N., Baraket A., Boudjaoui S., Neto E.T.T., Bausells J., El Bari, N. et al. // Biosens. Bioelectron. 2019. V. 130. P. 330–337. https://doi.org/10.1016/j.bios.2018.09.052
- Tomassetti M., Merola G., Martini E., Campanella L., Sanzò G., Favero G., Mazzei F. // Sensors 2017. V. 17. 819. https://doi.org/10.3390/s17040819
- Chaudhari P.P., Chau L.K., Tseng Y.T., Huang C.-J., Chen Y.-L. // Microchim. Acta 2020. V. 187. 396. https://doi.org/10.1007/s00604-020-04381-w
- Tomassetti M., Conta G., Campanella L., Favero G., Sanzò G., Mazzei F., Antiochia R. // Biosensors 2016. V. 6. 22. https://doi.org/10.3390/bios6020022
- Shanin I.A., Shaimardanov A.R., Thai N.T.D., Eremin S.A. // J. Anal. Chem. 2015. V. 70. P. 712–717. https://doi.org/10.1134/S1061934815060167
- Prusty A.K., Bhand S. // J. Electroanal. Chem. 2020. V. 863. 114055. https://doi.org/10.1016/j.jelechem.2020.114055
- Mungroo N.A., Neethirajan S. // Biosensors 2014. V. 4. P. 472–493. https://doi.org/10.3390/bios4040472
- Watanabe H., Satake A., Kido Y., Tsuji A. // Analyst 1999. V. 124. P. 1611–1615. https://doi.org/10.1039/A906026J
- Chen Y.Q, Wang Z., Wang Z., Tang S., Zhu Y., Xiao X. // J. Agric. Food Chem. 2008. V. 56. P. 2944–2952. https://doi.org/10.1021/jf703602b
- Hoppentocht M., Akkeman O.W., Voerman A.-J., Greijdanus B., Touw D.J., Alffenaar J.-W.C. // J. App. Bioanal. 2015. V. 1. P. 123–127. https://doi.org/10.17145/jab.15.020
- Dijkstra J.A., Voerman A.J., Greijdanus B., Touw D.J., Alffenaar J.W.C. // Antimicrob. Agents Chemother. 2016. V. 60. P. 4646–4651. https://doi.org/10.1128/AAC.03025-15
- Gaurav A., Gill J.P.S., Aulakh R.S., Bedi J.S. // Vet. World 2014. V. 7. P. 26–29. https://doi.org/10.14202/vetworld.2014.26-29
- Li G., Li Q., Wang X., Liu X., Zhang Y., Li R., Guo J., Zhang G. // Int. J. Biol. Macromol. 2023. V. 242. 125186. https://doi.org/10.1016/j.ijbiomac.2023.125186
- Han M., Gong L., Wang J., Zhang X., Jin Y., Zhao et al. // Sens. Actuators B 2019. V. 292. P. 94–104. https://doi.org/10.1016/j.snb.2019.04.019
- Zhao Y., Zhang G., Liu Q., Teng M., Yang J., Wang J. // J. Agric. Food Chem. 2008. V. 56. P. 12138–12142. https://doi.org/10.1021/jf802648z
- Chen L., Wang Z., Ferreri M., Su J., Han B. // J. Agric. Food Chem. 2009. V. 57. P. 4674–4679. https://doi.org/10.1021/jf900433d
- Byzova N.A., Smirnova N.I., Zherdev A.V., Eremin S.A., Shanin I.A., Lei H.-T., Sun Y., Dzantiev B.B. // Talanta 2014. V. 119. P. 125–132. https://doi.org/10.1016/j.talanta.2013.10.054
- Hendrickson O.D., Byzova N.A., Zvereva E.A., Zherdev A.V., Xu C., Dzantiev B.B. // J. Food Sci. Technol. 2021. V. 58. P. 292–301. https://doi.org/10.1007/s13197-020-04541-z
- Hendrickson O.D., Zvereva E.A., Popravko D.S., Zherdev A.V., Xu C., Dzantiev B.B. // J. Chromatogr. B 2020. V. 1141. 122014. https://doi.org/10.1016/j.jchromb.2020.122014
- Sheng W., Chang Q., Shi Y., Duan W., Zhang Y., Wang S. // Microchim. Acta 2018. V. 185. 404. https://doi.org/10.1007/s00604-018-2945-9
- Prakashan D., Kolhe P., Gandhi S. // Food Chem. 2024. V. 439. 138120. https://doi.org/10.1016/j.foodchem.2023.138120
- Taranova N.A., Berlina A.N., Zherdev A.V., Dzantiev B.B. // Biosens. Bioelectron. 2015. V. 63. P. 255–261. https://doi.org/10.1016/j.bios.2014.07.049
- Hendrickson O.D., Zvereva E.A., Shanin I.A., Zherdev A.V., Dzantiev B.B. // J. Sci. Food Agric. 2019. V. 99. P. 3834–3842. https://doi.org/10.1002/jsfa.9605
- Hendrickson O.D., Zvereva E.A., Zherdev A.V., Godjevargova T., Xu C., Dzantiev B.B. // Food Chem. 2020. V. 318. 126510. https://doi.org/10.1016/j.foodchem.2020.126510
- Li Y., Li J., Huang H., Jian D., Shan Y., Wang S., Liu F. // Food Control 2021. V. 130. 108256. https://doi.org/10.1016/j.foodcont.2021.108256
- Zengin A., Tamer U., Caykara T. // Anal. Chim. Acta 2014. V. 817. P. 33–41. https://doi.org/10.1016/j.aca.2014.01.042
- Shi Q., Huang J., Sun Y., Yin M., Hu M., Hu X., Zhang Z., Zhang G. // Spectrochim. Acta A 2018. V. 197. P. 107–113. https://doi.org/10.1016/j.saa.2017.11.045
- Shi Q., Huang J., Sun Y., Deng R., Teng M., Li Q. et al. // Microchim. Acta 2018. V. 185. 84. https://doi.org/10.1007/s00604-017-2556-x
- Pan Y., Fei D., Liu P., Guo X., Peng L., Wang Y., Xu N., Wei X. // Food Anal. Methods 2021. V. 14. P. 2642–2650. https://doi.org/10.1007/s12161-021-02091-4
- Li Z., Liu Y., Chen X., Wang Y., Niu H., Li F., et al. // Foods 2023. V. 12. 1587. https://doi.org/10.3390/foods12081587
- Wu X., Kuanga H., Hao C., Xing C., Wang L., Xu C. // Biosens. Bioelectron. 2012. V. 33. P. 309–312. https://doi.org/10.1016/j.bios.2012.01.017
- Conzuelo F., Campuzano S., Gamella M., Pinacho D.G., Reviejo A.J., Marco M.P.. Pingarrón J.M. // Biosens Bioelectron. 2013. V. 50. P. 100–105. https://doi.org/10.1016/j.bios.2013.06.019
- Song E., Yu M.; Wang Y.; Hu W.; Cheng D.; Swihart M.T.; Song Y. // Biosens. Bioelectron. 2015, 72, 320–325. https://doi.org/10.1016/j.bios.2015.05.018
- Cheng X., Ma J., Su J. // Molecules 2022. V. 27. 7319. https://doi.org/10.3390/molecules27217319
- Majdinasab M., Mishra R.K., Tang X., Marty J.L. // Trends Anal. Chem. 2020. V. 127. 115883. https://doi.org/10.1016/j.trac.2020.115883
- Cháfer-Pericás C., Maquieira Á., Puchades R. // Trends Anal. Chem. 2010. V. 29. P. 1038–1049. https://doi.org/10.1016/j.trac.2010.06.004
- Chen T., Cheng G., Ahmed S., Wang Y., Wang X., Hao H., Yuan Z. // Talanta 2017. V. 175. P. 435–442. https://dx.doi.org/10.1016/j.talanta.2017.07.044
- Li L., Wu S., Si Y., Li H., Yin X., Peng D. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. P. 4354–4377. https://doi.org/10.1111/1541-4337.13018
- Mustafa M.I., Mohammed A. // SLAS Discov. 2024. V. 29. 100140. https://doi.org/10.1016/j.slasd.2024.01.001
- Frenzel A., Schirrmann T., Hust M. // mAbs 2016. V. 8. P. 1177–1194. https://doi.org/10.1080/19420862.2016.1212149
- Majewska J., Kaźmierczak Z., Lahutta K., Lecion D., Szymczak A., Miernikiewicz P. et al. // Front. Immunol. 2019. V. 10. 2607. https://doi.org/10.3389/fimmu.2019.02607
- Petrenko V.A., Gillespie J.W., De Plano L.M., Shokhen M.A. // Viruses. 2022. V. 14. 384. https://doi.org/10.3390/v14020384
- Petrenko, V.A. // Viruses. 2024. V. 16. 277. https://doi.org/10.3390/v16020277
- Гулий О.И., Алсовэйди А.К.М., Фомин А.С., Габалов К.П., Староверов С.А., Караваева О.А. // Прикл. биохимия и микробиология. 2022. Т. 58. С. 513–519. https://doi.org/10.1134/S0003683822050088
- Гулий О.И., Евстигнеева С.С., Староверов С.А., Фомин А.С., Караваева О.А. // Прикл. биохимия и микробиология. 2023. Т. 59. С. 512–519.
- Makvandi-Nejad S., Sheedy C., Veldhuis L., Richard G., Hall J.C. // J. Immunol. Methods 2010. V. 360. P. 103–118. https://doi.org/10.1016/j.jim.2010.06.015
- Gomes F.B.M.B., Riedstra S., Ferreira J.P.M. // J. Immunol. Methods. 2010. V. 358. P. 17–22. https://doi.org/10.1016/j.jim.2010.03.021
- Wang F., Li N, Zhang Y., Sun X., Hu M., Zhao Y., Fan J. // Foods 2021. V. 10. 1933. https://doi.org/10.3390/foods10081933
- Li L., Wang X., Hou R., Wang Y., Wang X., Xie C. et al. // Food Control. 2022. V. 133. 108571. https://doi.org/10.1016/j.foodcont.2021.108571
- Swofford C.A., Nordeen S.A., Chen L., Desai M.M., Chen J., Springs et al. // Protein Sci. 2022. V. 31. e4457.
- Burmester J., Spinelli S., Pugliese L., Krebber A., Honegger A., Jung S. et al. // J. Mol. Biol. 2001. V. 309. P. 671–685. https://doi.org/10.1006/jmbi.2001.4663
- Quintero-Campos P., Gozalbo-Rovira R., Rodríguez-Díaz J., Maquieira Á., Morais S. // Anal. Chem. 2023. V. 95. P. 12113–12121. https://doi.org/10.1021/acs.analchem.3c02284
- Wentao D., Mian L., Qingsheng B., Zhonglin Z., Chao Y., Shuying L. // Biotechnol. Bull. 2013. V. 6. P. 70–74.
- Sandúa A., Sanmamed M.F., Rodríguez M., Ancizu-Marckert J., Gúrpide A., Perez-Gracia et al. // Clin. Chim. Acta 2023. V. 543. 117303. https://doi.org/10.1016/j.cca.2023.117303
- Sarma D., Marak M.R., Chetia I., Badwaik L.S., Nath P. // Phys. Scr. 2024. V. 99. 026006. https://doi.org/10.1088/1402-4896/ad1c7f
- Xu X., Li T., Liu Y., Zhou L., Li Y., Luo Y. et al. // Small. 2024. V. 20. e2309502. https://doi.org/10.1002/smll.202309502
Supplementary files
