Immunoassay using full-length and phage antibodies for antibiotic detection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The widespread use of antibiotics, leading to antibiotic resistance and the appearance of antibiotics in the environment and food, stimulates the development of new methods for monitoring antibacterial drugs in environmental objects. One of the promising areas for the development of methods for determining antibiotics belongs to sensor technologies. The key point in the development of sensory systems is the selection of a sensitive (recognizing) element. One of the most popular methods for recognizing antibiotics is the use of antibodies. The work presents the main immunosensory systems based on recording the “antigen-antibody” interaction and shows the advantages and disadvantages of polyclonal and monoclonal antibodies. The possibility of using phage antibodies to determine of antibiotics is described separately.

Full Text

Restricted Access

About the authors

O. I. Guliy

Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Author for correspondence.
Email: guliy_olga@mail.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

L. A. Dykman

Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences

Email: dykman_l@ibppm.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Russian Federation, Saratov, 410049

References

  1. Pauter K., Szultka-Młyńska M., Buszewski B. // Molecules 2020. V. 25. 2556. https://doi.org/10.3390/molecules25112556
  2. Новые методы иммуноанализа / Ред. У.П. Коллинз, М.: Мир, 1991. 279 с. (Complementary Immunoassays / Ed. Collins, W.P., Chichester: Wiley&Sons, 1988.)
  3. Mukhametova L.I., Eremin S.A. // Front. Biosci. (Elite Ed). 2024. V. 16. 4. https://doi.org/10.31083/j.fbe1601004
  4. Van Boeckel T.P., Brower C., Gilbert M., Grenfell B.T., Levin S.A., Robinson, T.P. et al. // Proc. Natl. Acad. Sci. USA. 2015. V. 112. P. 5649–5654. https://doi.org/10.1073/pnas.1503141112
  5. Ayankojo A.G., Reut J., Nguyen V.B.C., Boroznjak R., Syritski V. // Biosensors. 2022. V. 12. 441. https://doi.org/10.3390/bios12070441
  6. Ko E.-B., Hwang K.-A., Choi K.-C. // Reprod. Toxicol. 2019. V. 90. P. 15–23. https://doi.org/10.1016/j.reprotox.2019.08.006
  7. Fungo G.B.N., Uy J.C.W., Porciuncula K.L.J., Candelario C.M.A., Chua D.P.S., Gutierrez T.A.D. et al. // Phage 2023. V. 4. P. 55–67. https://doi.org/10.1089/phage.2023.0007
  8. Соколова O. // Животноводство России. 2021. № 7. С. 34–36.
  9. Кирничная В.К., Касьяненко Г.Р., Киселева Т.В. // Пищевая промышленность. 2013. № 9. С. 60–63.
  10. Zhang X., Wang J., Wu Q., Li L., Wang Y., Yang H. // Molecules 2019. V. 24. 1902. https://doi.org/10.3390/molecules24101902
  11. Кулапина Е.Г., Баринова О.В., Кулапина О.И., Утц И.А., Снесарев С.В. // Антибиотики и химиотерапия. 2009. Т. 54. С. 53–60.
  12. Guliy O.I., Zaitsev B.D., Borodina I.A. In: Nanobioanalytical Approaches to Medical Diagnostics. / Eds. P.K. Maurya, P. Chandra. Sawston: Woodhead Publishing, 2022. Р. 143–177. https://doi.org/10.1016/B978-0-323-85147-3.00004-9
  13. Thévenot D.R., Toth K., Durst R.A., Wilson G.S. // Biosens. Bioelectron. 2001. V. 16. P. 121–131. https://doi.org/10.1016/s0956-5663(01)00115-4
  14. Leca-Bouvier B.D., Blum L.J. Recognition Receptors in Biosensors / Ed M. Zourob. New York: Springer, 2010. P. 177–220. https://doi.org/10.1007/978-1-4419-0919-0_4
  15. Moreira F., Dutra R., Noronha J., Sales G. // Biosens. Bioelectron. 2014. V. 56. P. 217–222. https://doi.org/10.1016/j.bios.2013.12.052
  16. Dezhakam E., Tavakkol M., Kafili T., Nozohouri E., Naseri A., Khalilzadeh B., Rahbarghazi R. // Food Chem. 2024. V. 439. 138145. https://doi.org/10.1016/j.foodchem.2023.138145
  17. Reder-Christ K., Bendas G. // Sensors 2011. V. 11. P. 9450–9466. https://doi.org/10.3390/s111009450
  18. Ahmed S., Ning J., Peng D., Chen T., Ahmad I., Ali et al. // Food Agric. Immunol. 2020. V. 31. P. 268–290. https://doi.org/10.1080/09540105.2019.1707171
  19. Rudenko N., Fursova K., Shepelyakovskaya A., Karatovskaya A., Brovko F. // Sensors. 2021. V. 21. 7614. https://doi.org/10.3390/s21227614
  20. Lu N., Chen J., Rao Z., Guo B., Xu Y. // Biosensors 2023. V. 13. 850. https://doi.org/10.3390/bios13090850
  21. Gaudin V. // Biosens Bioelectron. 2017. V. 90. P. 363–377. https://doi.org/10.1016/j.bios.2016.12.005
  22. Fernandez F., Hegnerova K., Piliarik M., Sanchez-Baeza F., Homola J., Marco M.P. // Biosens Bioelectron. 2010. V. 26. P. 1231–1238. https://doi.org/10.1016/j.bios.2010.06.012
  23. Fernandez F., Pinacho D.G., Sanchez-Baeza F., Marco M.P. // J. Agric. Food Chem. 2011. V. 59. P. 5036–5043. https://doi.org/10.1021/jf1048035
  24. Pollap A., Kochana J. // Biosensors. 2019. V. 9. 61. https://doi.org/0.3390/bios9020061
  25. Антитела. Методы / Ред. Д. Кэтти. М.: Мир, 1991.
  26. Sharma S., Byrne H., O’Kennedy R.J. // Essays Biochem. 2016. V. 60. P. 9–18. https://doi.org/10.1042/EBC20150002
  27. Petrenko V.A. // Viruses 2018. V. 10. 311. https://doi.org/10.3390/v10060311
  28. Тикунова Н.В., Морозова В.В. // Acta Nat. 2009. Т. 1. С. 22–31. https://doi.org/10.32607/20758251-2009-1-3-20-28.
  29. Guliy O.I., Evstigneeva S.S., Dykman L.A. // Biosens. Bioelectron. 2023. V. 222. 114909. https://doi.org/10.1016/j.bios.2022.114909
  30. Xiao X., Hu S., Lai X., Peng J., Lai W. // Trends Food Sci. Technol. 2021. V. 111. P. 68–88. https://doi.org/10.1016/j.tifs.2021.02.045
  31. Arnold D., Somogyi A. // J. Assoc. Off. Anal. Chem. 1985. V. 68. P. 984-990.
  32. Самсонова Ж.В., Рубцова M.Ю., Чикишева Л.В., Егоров A.M. // Вестн. Моск. Ун-та. Сер. 2. Химия. 2002. Т. 43. С. 396–398.
  33. Федотова Е.С., Щербаков А.А., Сидоркин В.А., Староверов С.А., Дыкман Л.А., Василенко О.А. // Ветеринария 2007. № 6. C. 57–58.
  34. Дыкман, Л.А., Сумарока, М.В., Староверов, С.А., Зайцева, И.С., Богатырев, В.А. // Известия РАН. Сер. биол. 2004. Т. 31. C. 86–91.
  35. Дыкман Л.А., Староверов С.А., Богатырев В.А., Щеголев С.Ю. // Российские нанотехнологии. 2010. Т. 5. С. 58–68. https://doi.org/10.1134/S1995078010110029
  36. Sui J.X., Lin H., Cao L.M., Li Z.X. // Food Agr. Immunol. 2009. V. 20. P. 125–137. https://doi.org/10.1080/09540100902889936
  37. Cao L., Sui J., Kong D., Li Z., Lin H. // Food Anal. Methods. 2011. V. 4. P. 517–524. https://doi.org/10.1007/s12161-011-9196-2
  38. Sui J., Lin H., Xu Y., Cao L. // Food Anal. Methods 2011. V. 4. P. 245–250. https://doi.org/10.1007/s12161-010-9137-5
  39. Gunther M., Saxinger L., Gray M., LeGatt D. // Ann. Pharmacother. 2013. V. 47. e19. https://doi.org/10.1345/aph.1R566
  40. Islam R., Luu H.T.L., Kuss S. // J. Electrochem. Soc. 2020. V. 167. 045501. https://doi.org/0.1149/1945-7111/ab6ff3
  41. Raykova M.R., Corrigan D.K., Holdsworth M., Henriquez F.L., Ward A.C. // Biosensors. 2021. V. 11. 232. https://doi.org/0.3390/bios11070232
  42. Que X., Chen X., Fu L., Lai W., Zhuang J., Chen G., Tang D. // J. Electroanal. Chem. 2013. V. 704. P. 111–117. https://doi.org/10.1016/j.jelechem.2013.06.023
  43. Yadav A.K., Verma D., Lakshmi G.B.V.S., Eremin S., Solanki P.R. // Food Chem. 2021. V. 363. 130245. https://doi.org/10.1016/j.foodchem.2021.130245
  44. Stevenson H.S., Shetty S.S., Thomas N.J., Dhamu V.N., Bhide A., Prasad S. // ACS Omega 2019. V. 4. P. 6324−6330. https://doi.org/10.1021/acsomega.8b03534
  45. Tomassetti M., Angeloni R., Martini E., Castrucci M., Campanella L. // Sens. Actuators B Chem. 2018. V. 255. P. 1545–1552. https://doi.org/10.1016/j.snb.2017.08.166
  46. El-Moghazy A.Y., Zhao C., Istamboulie G., Amaly N., Si Y., Noguer T., Sun G. // Biosens. Bioelectron. 2018. V. 117. P 838–844. https://doi.org/10.1016/j.bios.2018.07.025
  47. Liu X., Zheng S., Hu Y., Li Z., Luo F., He Z. // Food Anal. Methods 2016. V. 9. P. 2972–2978. https://doi.org/10.1007/s12161-016-0480-z
  48. Li H., Xu B., Wang D., Zhou Y., Zhang H., Xia W., Xu S., Li Y. // J. Biotechnol. 2015. V. 203. P. 97–103. https://doi.org/10.1016/j.jbiotec.2015.03.013
  49. Conzuelo F., Gamella M., Campuzano S., Reviejo A.J., Pingarrón J.M. // Anal. Chim. Acta 2012. V. 737. P. 29–36. https://doi.org/10.1016/j.aca.2012.05.051
  50. Merola G., Martini E., Tomassetti M., Campanella L. // J. Pharm. Biomed. Anal. 2015. V. 106. P. 186–196. https://doi.org/10.1016/j.jpba.2014.08.005
  51. Faridah S., Hazana R., Gayah A. R., Norzaili Z., Azima A., Nur Azura M. S., Zamri I. // Mal. J. Anim. Sci. 2012. V. 15. P. 67–80.
  52. Шинко Е.И., Фарафонова О.В., Ермолаева Т.Н. // Заводская лаборатория. Диагностика материалов. 2021. Т. 87. С. 11–16. https://doi.org/10.26896/1028-6861-2021-87-12-12-17
  53. Shinko E.I., Farafonova O.V., Shanin I.A., Eremin S.A., Ermolaeva T.N. // Anal. Lett. 2022. V. 55. P. 1164–1177 https://doi.org/10.1080/00032719.2021.1991364
  54. Bizina E.V., Farafonova O.V., Zolotareva N.I., Grazhulene S.S., Ermolaeva T.N. // J. Anal. Chem. 2022. V. 77. P. 458–465. https://doi.org/10.1134/S1061934822040049
  55. Hassani E.A.E.,N., Baraket A., Boudjaoui S., Neto E.T.T., Bausells J., El Bari, N. et al. // Biosens. Bioelectron. 2019. V. 130. P. 330–337. https://doi.org/10.1016/j.bios.2018.09.052
  56. Tomassetti M., Merola G., Martini E., Campanella L., Sanzò G., Favero G., Mazzei F. // Sensors 2017. V. 17. 819. https://doi.org/10.3390/s17040819
  57. Chaudhari P.P., Chau L.K., Tseng Y.T., Huang C.-J., Chen Y.-L. // Microchim. Acta 2020. V. 187. 396. https://doi.org/10.1007/s00604-020-04381-w
  58. Tomassetti M., Conta G., Campanella L., Favero G., Sanzò G., Mazzei F., Antiochia R. // Biosensors 2016. V. 6. 22. https://doi.org/10.3390/bios6020022
  59. Shanin I.A., Shaimardanov A.R., Thai N.T.D., Eremin S.A. // J. Anal. Chem. 2015. V. 70. P. 712–717. https://doi.org/10.1134/S1061934815060167
  60. Prusty A.K., Bhand S. // J. Electroanal. Chem. 2020. V. 863. 114055. https://doi.org/10.1016/j.jelechem.2020.114055
  61. Mungroo N.A., Neethirajan S. // Biosensors 2014. V. 4. P. 472–493. https://doi.org/10.3390/bios4040472
  62. Watanabe H., Satake A., Kido Y., Tsuji A. // Analyst 1999. V. 124. P. 1611–1615. https://doi.org/10.1039/A906026J
  63. Chen Y.Q, Wang Z., Wang Z., Tang S., Zhu Y., Xiao X. // J. Agric. Food Chem. 2008. V. 56. P. 2944–2952. https://doi.org/10.1021/jf703602b
  64. Hoppentocht M., Akkeman O.W., Voerman A.-J., Greijdanus B., Touw D.J., Alffenaar J.-W.C. // J. App. Bioanal. 2015. V. 1. P. 123–127. https://doi.org/10.17145/jab.15.020
  65. Dijkstra J.A., Voerman A.J., Greijdanus B., Touw D.J., Alffenaar J.W.C. // Antimicrob. Agents Chemother. 2016. V. 60. P. 4646–4651. https://doi.org/10.1128/AAC.03025-15
  66. Gaurav A., Gill J.P.S., Aulakh R.S., Bedi J.S. // Vet. World 2014. V. 7. P. 26–29. https://doi.org/10.14202/vetworld.2014.26-29
  67. Li G., Li Q., Wang X., Liu X., Zhang Y., Li R., Guo J., Zhang G. // Int. J. Biol. Macromol. 2023. V. 242. 125186. https://doi.org/10.1016/j.ijbiomac.2023.125186
  68. Han M., Gong L., Wang J., Zhang X., Jin Y., Zhao et al. // Sens. Actuators B 2019. V. 292. P. 94–104. https://doi.org/10.1016/j.snb.2019.04.019
  69. Zhao Y., Zhang G., Liu Q., Teng M., Yang J., Wang J. // J. Agric. Food Chem. 2008. V. 56. P. 12138–12142. https://doi.org/10.1021/jf802648z
  70. Chen L., Wang Z., Ferreri M., Su J., Han B. // J. Agric. Food Chem. 2009. V. 57. P. 4674–4679. https://doi.org/10.1021/jf900433d
  71. Byzova N.A., Smirnova N.I., Zherdev A.V., Eremin S.A., Shanin I.A., Lei H.-T., Sun Y., Dzantiev B.B. // Talanta 2014. V. 119. P. 125–132. https://doi.org/10.1016/j.talanta.2013.10.054
  72. Hendrickson O.D., Byzova N.A., Zvereva E.A., Zherdev A.V., Xu C., Dzantiev B.B. // J. Food Sci. Technol. 2021. V. 58. P. 292–301. https://doi.org/10.1007/s13197-020-04541-z
  73. Hendrickson O.D., Zvereva E.A., Popravko D.S., Zherdev A.V., Xu C., Dzantiev B.B. // J. Chromatogr. B 2020. V. 1141. 122014. https://doi.org/10.1016/j.jchromb.2020.122014
  74. Sheng W., Chang Q., Shi Y., Duan W., Zhang Y., Wang S. // Microchim. Acta 2018. V. 185. 404. https://doi.org/10.1007/s00604-018-2945-9
  75. Prakashan D., Kolhe P., Gandhi S. // Food Chem. 2024. V. 439. 138120. https://doi.org/10.1016/j.foodchem.2023.138120
  76. Taranova N.A., Berlina A.N., Zherdev A.V., Dzantiev B.B. // Biosens. Bioelectron. 2015. V. 63. P. 255–261. https://doi.org/10.1016/j.bios.2014.07.049
  77. Hendrickson O.D., Zvereva E.A., Shanin I.A., Zherdev A.V., Dzantiev B.B. // J. Sci. Food Agric. 2019. V. 99. P. 3834–3842. https://doi.org/10.1002/jsfa.9605
  78. Hendrickson O.D., Zvereva E.A., Zherdev A.V., Godjevargova T., Xu C., Dzantiev B.B. // Food Chem. 2020. V. 318. 126510. https://doi.org/10.1016/j.foodchem.2020.126510
  79. Li Y., Li J., Huang H., Jian D., Shan Y., Wang S., Liu F. // Food Control 2021. V. 130. 108256. https://doi.org/10.1016/j.foodcont.2021.108256
  80. Zengin A., Tamer U., Caykara T. // Anal. Chim. Acta 2014. V. 817. P. 33–41. https://doi.org/10.1016/j.aca.2014.01.042
  81. Shi Q., Huang J., Sun Y., Yin M., Hu M., Hu X., Zhang Z., Zhang G. // Spectrochim. Acta A 2018. V. 197. P. 107–113. https://doi.org/10.1016/j.saa.2017.11.045
  82. Shi Q., Huang J., Sun Y., Deng R., Teng M., Li Q. et al. // Microchim. Acta 2018. V. 185. 84. https://doi.org/10.1007/s00604-017-2556-x
  83. Pan Y., Fei D., Liu P., Guo X., Peng L., Wang Y., Xu N., Wei X. // Food Anal. Methods 2021. V. 14. P. 2642–2650. https://doi.org/10.1007/s12161-021-02091-4
  84. Li Z., Liu Y., Chen X., Wang Y., Niu H., Li F., et al. // Foods 2023. V. 12. 1587. https://doi.org/10.3390/foods12081587
  85. Wu X., Kuanga H., Hao C., Xing C., Wang L., Xu C. // Biosens. Bioelectron. 2012. V. 33. P. 309–312. https://doi.org/10.1016/j.bios.2012.01.017
  86. Conzuelo F., Campuzano S., Gamella M., Pinacho D.G., Reviejo A.J., Marco M.P.. Pingarrón J.M. // Biosens Bioelectron. 2013. V. 50. P. 100–105. https://doi.org/10.1016/j.bios.2013.06.019
  87. Song E., Yu M.; Wang Y.; Hu W.; Cheng D.; Swihart M.T.; Song Y. // Biosens. Bioelectron. 2015, 72, 320–325. https://doi.org/10.1016/j.bios.2015.05.018
  88. Cheng X., Ma J., Su J. // Molecules 2022. V. 27. 7319. https://doi.org/10.3390/molecules27217319
  89. Majdinasab M., Mishra R.K., Tang X., Marty J.L. // Trends Anal. Chem. 2020. V. 127. 115883. https://doi.org/10.1016/j.trac.2020.115883
  90. Cháfer-Pericás C., Maquieira Á., Puchades R. // Trends Anal. Chem. 2010. V. 29. P. 1038–1049. https://doi.org/10.1016/j.trac.2010.06.004
  91. Chen T., Cheng G., Ahmed S., Wang Y., Wang X., Hao H., Yuan Z. // Talanta 2017. V. 175. P. 435–442. https://dx.doi.org/10.1016/j.talanta.2017.07.044
  92. Li L., Wu S., Si Y., Li H., Yin X., Peng D. // Compr. Rev. Food Sci. Food Saf. 2022. V. 21. P. 4354–4377. https://doi.org/10.1111/1541-4337.13018
  93. Mustafa M.I., Mohammed A. // SLAS Discov. 2024. V. 29. 100140. https://doi.org/10.1016/j.slasd.2024.01.001
  94. Frenzel A., Schirrmann T., Hust M. // mAbs 2016. V. 8. P. 1177–1194. https://doi.org/10.1080/19420862.2016.1212149
  95. Majewska J., Kaźmierczak Z., Lahutta K., Lecion D., Szymczak A., Miernikiewicz P. et al. // Front. Immunol. 2019. V. 10. 2607. https://doi.org/10.3389/fimmu.2019.02607
  96. Petrenko V.A., Gillespie J.W., De Plano L.M., Shokhen M.A. // Viruses. 2022. V. 14. 384. https://doi.org/10.3390/v14020384
  97. Petrenko, V.A. // Viruses. 2024. V. 16. 277. https://doi.org/10.3390/v16020277
  98. Гулий О.И., Алсовэйди А.К.М., Фомин А.С., Габалов К.П., Староверов С.А., Караваева О.А. // Прикл. биохимия и микробиология. 2022. Т. 58. С. 513–519. https://doi.org/10.1134/S0003683822050088
  99. Гулий О.И., Евстигнеева С.С., Староверов С.А., Фомин А.С., Караваева О.А. // Прикл. биохимия и микробиология. 2023. Т. 59. С. 512–519.
  100. Makvandi-Nejad S., Sheedy C., Veldhuis L., Richard G., Hall J.C. // J. Immunol. Methods 2010. V. 360. P. 103–118. https://doi.org/10.1016/j.jim.2010.06.015
  101. Gomes F.B.M.B., Riedstra S., Ferreira J.P.M. // J. Immunol. Methods. 2010. V. 358. P. 17–22. https://doi.org/10.1016/j.jim.2010.03.021
  102. Wang F., Li N, Zhang Y., Sun X., Hu M., Zhao Y., Fan J. // Foods 2021. V. 10. 1933. https://doi.org/10.3390/foods10081933
  103. Li L., Wang X., Hou R., Wang Y., Wang X., Xie C. et al. // Food Control. 2022. V. 133. 108571. https://doi.org/10.1016/j.foodcont.2021.108571
  104. Swofford C.A., Nordeen S.A., Chen L., Desai M.M., Chen J., Springs et al. // Protein Sci. 2022. V. 31. e4457.
  105. Burmester J., Spinelli S., Pugliese L., Krebber A., Honegger A., Jung S. et al. // J. Mol. Biol. 2001. V. 309. P. 671–685. https://doi.org/10.1006/jmbi.2001.4663
  106. Quintero-Campos P., Gozalbo-Rovira R., Rodríguez-Díaz J., Maquieira Á., Morais S. // Anal. Chem. 2023. V. 95. P. 12113–12121. https://doi.org/10.1021/acs.analchem.3c02284
  107. Wentao D., Mian L., Qingsheng B., Zhonglin Z., Chao Y., Shuying L. // Biotechnol. Bull. 2013. V. 6. P. 70–74.
  108. Sandúa A., Sanmamed M.F., Rodríguez M., Ancizu-Marckert J., Gúrpide A., Perez-Gracia et al. // Clin. Chim. Acta 2023. V. 543. 117303. https://doi.org/10.1016/j.cca.2023.117303
  109. Sarma D., Marak M.R., Chetia I., Badwaik L.S., Nath P. // Phys. Scr. 2024. V. 99. 026006. https://doi.org/10.1088/1402-4896/ad1c7f
  110. Xu X., Li T., Liu Y., Zhou L., Li Y., Luo Y. et al. // Small. 2024. V. 20. e2309502. https://doi.org/10.1002/smll.202309502

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Analytical methods for determining antibiotics

Download (121KB)
3. Fig. 2. General diagram of the biosensor

Download (108KB)
4. Fig. 3. Structure of antibodies

Download (84KB)
5. Fig. 4. General scheme of action of polyclonal antibodies with the analyzed agent

Download (88KB)
6. Fig. 5. General scheme of action of monoclonal antibodies with the analyzed agent

Download (65KB)
7. Fig. 6. Scheme of affinity selection of antibodies from a phage library

Download (172KB)

Copyright (c) 2024 Russian Academy of Sciences