Optimization of biosynthesis of butyric acid from glucose through the inverted fatty acid β-oxidation pathway by recombinant Escherichia coli strains

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The biosynthesis of butyric acid from glucose though the inverted fatty acid β-oxidation by recombinant Escherichia coli strains was optimized. The increased yield of the target compound was achieved resulting from the plasmid expression of atoB, fadB and fadE/fabI genes in the core strain MG∆4 PL-tesB ΔyciA (MG1655 ∆ackA-pta, ∆poxB, ∆ldhA, adhE, PL-SDj10-tesB, ∆yciA). The positive effect of enforced ATP hydrolysis on microaerobic conversion of carbohydrate substrate to the final product by the recombinants was demonstrated. Activation of the futile cycle of pyruvate-phosphoenolpyruvate-pyruvate, due to the increased expression of the ppsA gene, ensured a marked increase in glucose consumption by the recombinants and led to an increase in the molar yield of butyric acid up to 39.5%. When the components of the H+-ATP synthase complex were uncoupled resulting from the deletion of atpFH genes, the molar yield of butyric acid from glucose demonstrated by the strain forming butyryl-CoA by the action of enoyl-ACP reductase FabI reached 46%.

Full Text

Restricted Access

About the authors

A. Yu. Gulevich

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312

A. Yu. Skorokhodova

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312

V. G. Debabov

Federal Research Centre “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: andrey.gulevich@gmail.com
Russian Federation, Moscow, 117312

References

  1. Dwidar M., Park J.Y., Mitchell R.J., Sang B.I. // Sci. World. J. 2012. V. 2012. 471417. https://doi.org/10.1100/2012/471417
  2. Sjoblom M., Risberg P., Filippova A., Ohrman O.G.W., Rova U., Christakopoulas P. // CemCatChem. 2017. V. 9. P. 4529–4537.
  3. Dürre P. // Biotechnol. J. 2007. V. 2. № 12. P. 1525–1534.
  4. Jha A.K., Li J., Yuan Y., Baral N., Ai B. // Int. J. Agric. Biol. 2014. V. 16. P. 1019–1024.
  5. Zigová J., Šturdı́k E. // J. Ind. Microbiol. Biotechnol. 2000. V. 24. P. 153–160.
  6. Luo H., Yang R., Zhao Y., Wang Z., Liu Z., Huang M., Zeng Q. // Bioresour. Technol. 2018. V. 253. P. 343–354.
  7. Volker A.R., Gogerty D.S., Bartholomay C., Hennen-Bierwagen T., Zhu H., Bobik T.A. // Microbiology. 2014. V. 160. P. 1513–1522.
  8. Saini M., Wang Z.W., Chiang C.J., Chao Y.P. // J. Agric. Food. Chem. 2014. V. 62. № 19. P. 4342–4348.
  9. Kataoka N., Vangnai A.S., Pongtharangkul T., Yakushi T., Matsushita K. // J. Biosci. Bioeng. 2017. V. 123. № 5. P. 562–568.
  10. Wang L., Chauliac D., Moritz B.E., Zhang G., Ingram L.O., Shanmugam K.T. // Biotechnol. Biofuels. 2019. V. 12. № 62. https://doi.org/10.1186/s13068-019-1408-9
  11. Серегина Т.А., Шакулов Р.С., Дебабов В.Г., Миронов А.С. // Биотехнология. 2009. № 6. С. 24–35.
  12. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2022. Т. 58. № 4. С. 330–337.
  13. Гулевич А.Ю., Скороходова А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2021. Т. 57. № 2. С. 117–126.
  14. Sambrook J., Fritsch E., Maniatis T. // Molecular Cloning: a Laboratory Manual, 2nd Ed., N.Y.: Cold Spring Harbor Lab. Press, 1989. 1659 р.
  15. Скороходова А.Ю., Гулевич А.Ю., Дебабов В.Г. // Прикл. биохимия и микробиология. 2021. Т. 57. № 4. С. 342–352.
  16. Skorokhodova A.Y., Stasenko A.A., Krasilnikova N.V., Gulevich A.Y., Debabov V.G. // Fermentation. 2022. V. 8. № 12. 738. https://doi.org/10.3390/fermentation8120738
  17. Fujita Y., Matsuoka H., Hirooka K. // Mol. Microbiol. 2007. V. 66. № 4. P. 829–839.
  18. Vick J.E., Clomburg J.M., Blankschien M.D., Chou A., Kim S., Gonzalez R. // Appl. Environ. Microbiol. 2015. V. 81. № 54. P. 1406–1416.
  19. Koebmann B.J., Westerhoff H.V., Snoep J.L., Nilsson D., Jensen P.R. // J. Bacteriol. 2002. V. 184. № 14. P. 3909–3916.
  20. Vemuri G.N., Altman E., Sangurdekar D.P., Khodursky A.B., Eiteman M.A. // Appl. Environ. Microbiol. 2006. V. 72. № 5. P. 3653–3661.
  21. Hädicke O., Klamt S. // Biochem. Soc. Trans. 2015. V. 43. № 6. P. 1140–1145.
  22. Causey T.B., Shanmugam K.T., Yomano L.P., Ingram L.O. // Proc. Natl. Acad. Sci. U.S.A. 2004. V. 101. № 8. P. 2235–2240.
  23. Hädicke O., Bettenbrock K., Klamt S. // Biotechnol. Bioeng. 2015. V. 112. № 10. P. 2195–2199.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences