The dynamics of the levels of cytoplasmic HSP70 and chloroplast HSP70B chaperones under heat stress differs in three species of pumpkin with different resistance to stress

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The first line of defense in plants under stress is the cell chaperone system. In this work, we studied the effect of heat stress on the levels of cytoplasmic chaperones HSP70 and HSP70B in chloroplasts of three species of Cucurbita (C. maxima Duchesne, C. pepo L. and C. moschata Duchesne), which differ in resistance to stress. A relationship has been established between the levels of chaperones HSP70 in the cytoplasm and HSP70B in chloroplasts and the species of pumpkin plants under heat stress conditions. Under stress, a significant increase in the level of chaperones was observed in the cells of pumpkin plants C. maxima – the level of HSP70 in the cytoplasm increased by 3.6 times, and the level of HSP70B in chloroplasts – by two times. Heat stress caused a 1.7-fold increase in the level of the cytoplasmic chaperone HSP70 in the cells of C. pepo pumpkin plants, but no significant change in the level of the HSP70B protein was noted. However, as a result of the effect of heat stress on C. moschata pumpkin plants, a decrease in the levels of HSP70 and HSP70B was revealed compared to untreated plants. The dynamics of changes in the levels of chaperones in the cytoplasm and chloroplasts under the influence of heat stress are similar. It should be noted that the constitutive level of HSP70 and HSP70B under normal conditions in C. moschata and C. repo is higher than in C. maxima. Analysis of the data obtained revealed an interesting pattern: high constitutive levels of HSP lead to insignificant induction of HSP and vice versa – low constitutive level of these proteins correlates with high induction of these proteins after heat stress. The data obtained are important for understanding the mechanisms of plant resistance to stress and can be useful for the selection and creation of highly resistant productive varieties of agriculturally important plants.

Full Text

Restricted Access

About the authors

N. D. Murtazina

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: nyurina@inbi.ras.ru

Bach Institute of Biochemistry

Russian Federation, Moscow, 119071

L. S. Sharapova

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Email: nyurina@inbi.ras.ru

Bach Institute of Biochemistry

Russian Federation, Moscow, 119071

N. P. Yurina

Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences

Author for correspondence.
Email: nyurina@inbi.ras.ru

Bach Institute of Biochemistry

Russian Federation, Moscow, 119071

References

  1. Al-Whaibi M.H. // J. King Saud Univ.-Science. 2011. V. 23. P. 139–150. https://doi.org/10.1016/j.jksus.2010.06.022
  2. Юрина Н.П. // Молекулярная биология. 2023. Т. 57. C. 949–964. https://doi.org/10.31857/S00 М26898423060228
  3. Cazale A.C., Clement M., Chiarenza S., Roncato M.A., Pochon N., Creff A. et al. // J. Exp. Bot. 2009. V. 6. P. 2653–2664. https://doi.org/10.1093/jxb/erp109
  4. Ul Haq S., Khan A., Ali M., Khattak A.M., Gai W.X., Zhang H.X. et al. // Int. J. Mol. Sci. 2019. V. 20. 5321. https://doi.org/10.3390/ijms20215321
  5. Rehman A., Atif R.M., Qayyum A., Du X., Hinze L., Azhar M.T. // Genomics. 2020. V. 112. P. 4442–4453. https://doi.org/10.1016/j.ygeno.2020.07.039
  6. Sung D.Y., Vierling E., Guy C.L. // Plant Physiol. 2001. V. 126. P. 789–800. https://doi.org/10.1104/pp.126.2.789
  7. Masand S., Yadav S.K. // Mol. Biol. Rep. 2016. V. 43. P. 53–64. https://doi.org/10.1007/s11033-015-3938-y
  8. Jung K.H., Gho H.J., Nguyen M.X., Kim S.R., An G. // Funct. Integr. Genom. 2013. V. 13. P. 391–402. https://doi.org/10.1007/s10142-013-0331-6
  9. Kallamadi P.R., Dandu K., Kirti P.B., Rao C.M., Thakur S.S., Mulpuri S. // Proteomics. 2018. V. 18. 1700418. https://doi.org/10.1002/pmic.201700418
  10. Devarajan A.K., Muthukrishanan G., Truu J., Truu M., Ostonen, I., Kizhaeral S.S. et al. // Plants. 2021. V. 10. 387. https://doi.org/10.3390/plants10020387
  11. Pulido P., Llamas E., Rodriguez-Concepcion M. // Plant Signal. Behav. 2017. V. 12. e1290039.
  12. Cho E.K., Hong C.B. // Plant Cell Rep. 2006. V. 25. P. 349–358. https://doi.org/10.1007/s00299-005-0093-2
  13. Augustine S.M., Cherian A.V., Syamaladevi D.P., Subramonian N. // Plant Cell Physiol. 2015. V. 56. P. 2368–2380. https://doi.org/10.1093/pcp/pcv142
  14. Song A., Zhu X., Chen F., Gao H., Jiang J., Chen S. // Int. J. Mol. Sci. 2014. V. 15. P. 5063–5078. https://doi.org/10.3390/ijms15035063
  15. Guo M., Liu J.-H., Ma X., Zhai Y.-F., Gong Z.-H., Lu M.-H. // Plant Sci. 2016. V. 252. P. 246–256. https://dx.doi.org/10.1016/j.plantsci.2016.07.001
  16. Mokhtar M., Bouamar S., Di Lorenzo A., Temporini C., Daglia M., Riazi A. // Molecules. 2021. V. 26. 3623. https://10.3390/molecules26123623
  17. Vinayashree S., Vasu P. // Food Chem. 2021. V. 340. 128177. https://10.1016/j.foodchem.2020.128177
  18. Grover A., Mittal D., Negi M., Lavania D. // Plant Science. 2013. V. 205–206. P. 38–47. https://10.1016/j.plantsci.2013.01.005
  19. Круг Г. Овощеводство. Перевод с немецкого. М.: Колос, 2000. 572 с.
  20. Bradford M.M. // Anal. Biochem. 1976. V. 72. P. 248–254. https://10.1006/abio.1976.9999
  21. Laemmly U.K. // Nature. 1970. V. 227. P. 680–685. https://10.1038/227680a0
  22. Snedecor G.W., Cochran W.G. // Statistical methods. 6th Ed., Ames, Lowa: The Lowa state University. 1967.
  23. Cvetkovska M., Zhang X., Vakulenko G., Benzaquen S., Szyszka-Mroz B., Malczewski N. et al. // Plant, Cell &Environment. 2022. V. 45. P. 156–177. https://doi.org/10.1111/pce.1420
  24. Davoudi M., Chen J., Lou Q. // Int. J. Mol. Sci. 2022. V. 23. 1918. https://10.3390/ijms23031918.
  25. Chankova S., Mitrovska Z., Miteva D., Oleskina Y.P., Yurina N.P. // Gene. 2013. V. 516. P. 184–189. https://dx.doi.org/10.1016/j.gene.2012.11.052
  26. Swindell W.R., Huebner M., Weber A.P. // BMC Genomics. 2007. V. 8. 125. https://doi.org/10.1186/1471-2164-8-125
  27. Zhang L., Zhao H.-K., Dong Q.-L., Zhang Y.-Y. Wang Y.-M., Li H.-Y. et al. // Front. Plant Sci. 2015. V. 6. 773. https://doi.org/10.3389/fpls.2015.00773
  28. Singh R.K., Jaishankar J., Muthamilarasan M., Shweta S., Dangi A., Prasad M // Sci. Rep. 2016. V. 6. 32641. https://doi.org/10.1038/srep32641
  29. Kim T., Samraj S., Jimenez J., Gomez C., Liu T., Begcy K. // BMC Plant Biol. 2021. V. 17. 185. https://doi.org/10.1186/s12870-021-02959-x
  30. Kumar A., Sharma S., Chunduri V., Kaur A., Kaur S., Malhotra N. et al. // Sci. Repts. 2020. V. 10. 7858. https://doi.org/10.1038/s41598-020-64746-2
  31. Duan S., Liu B., Zhang Y., Li G., Guo X. // BMC Genomics. 2019. V. 20. 257. https://doi.org/10.1186/s12864-019-5617-1
  32. Hu W., Hu G., Han B. // Plant Sci. 2009. V. 176. P. 583–590. https://doi.org/10.1016/j.plantsci.2009.01.016
  33. Andrási N., Pettkó-Szandtner A., Szabados L. // Journal of Experimental Botany. 2021. V. 72. P. 1558–1575. https://10.1093/jxb/eraa576
  34. Schroda M. // Photosynthesis Research. 2004. V. 82. P. 221–240. https://10.1007/s11120-004-2216-y
  35. Ермохина О.В., Белкина Г.Г., Олескина Ю.П., Фаттахов С.Г., Юрина Н.П. // Прикл. биохимия и микробиология. 2009. Т. 45. С. 612–617. https://10.1134/S0003683809050160

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The content of cytoplasmic Hsp70 and chloroplast Hsp70B proteins in plants of butternut squash Cucurbita moschata Duchesne (lanes 2, 3), hard-barked Cucurbita pepo L. (lanes 4, 5), large-fruited Cucurbita maxima Duchesne (lanes 6, 7) under heat stress (+) or without (–): a – electrophoretogram of proteins stained with Coomassie, protein marker (lane 1); b – immunoblotting with antibodies to cytoplasmic Hsp70; c – immunoblotting with antibodies to chloroplast Hsp70B

Download (150KB)
3. Fig. 2. Changes in the levels of cytoplasmic HSP70 and chloroplast HSP70B proteins in three pumpkin species after heat stress. The levels of heat shock proteins under heat stress are calculated relative to the HSP level of the corresponding pumpkin species under non-stress conditions

Download (133KB)
4. Fig. 3. Constitutive levels of cytoplasmic HSP70 and chloroplast HSP70B proteins in three pumpkin species under conditions without heat stress. The level of heat shock proteins HSP70 and HSP70B in C. maxima plants is taken as 1 unit

Download (138KB)

Copyright (c) 2024 Russian Academy of Sciences