Fungal Hydrophobins: Biosynthesis, Properties, Possibilities of Application in Biotechnology (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review summarizes current information about hydrophobins – low molecular weight proteins synthesized by filamentous fungi and which are one of the strongest cellular biosurfactants. The mechanism of biosynthesis of hydrophobins, the chemical structures and spectrum of its natural and synthetic isoforms, biological activity and role in the regulation of vital processes of producers are presented. The potential for using hydrophobins in biotechnology has been demonstrated.

Full Text

Restricted Access

About the authors

E. V. Lopatukhin

Gause Institute of New Antibiotics

Author for correspondence.
Email: sadykova_09@mail.ru
Russian Federation, Moscow

Yu. A. Ihalainen

Lomonosov Moscow State University

Email: sadykova_09@mail.ru
Russian Federation, Moscow

N. N. Markelova

Gause Institute of New Antibiotics

Email: sadykova_09@mail.ru
Russian Federation, Moscow

A. E. Kuvarina

Gause Institute of New Antibiotics

Email: nastena.lysenko@mail.ru
Russian Federation, Moscow

V. S. Sadykova

Gause Institute of New Antibiotics

Email: sadykova_09@mail.ru
Russian Federation, Moscow

References

  1. Wösten H.A., Schuren F.H., Wessels J.G. // The EMBO Journal. 1994. V. 13. № 24. P. 5848–5854.
  2. Lumsdon S.O., Green J., Stieglitz B. // Colloids and Surfaces B: Biointerfaces. 2005. V. 44. № 4. P. 172–178. https://doi.org/10.1016/j.colsurfb.2005.06.012
  3. Kallio J.M., Linder M.B., Rouvinen J. // Journal of biological chemistry. 2007. V. 282. № 39. P. 28733–28739. https://doi.org/10.1074/jbc.M704238200
  4. Dokouhaki M., Hung A., Kasapis S., Gras S.L. // Trends in Food Science & Technology. 2021. V. 111. P. 378–387. https://doi.org/10.1016/j.tifs.2021.03.001
  5. Lo V.C., Ren Q., Pham C.L.L., Morris V.K., Kwan A.H., Sunde M. // Nanomaterials. 2014. V. 4. № 3. P. 827–843. https://doi.org/10.3390/nano4030827
  6. Gandier J.A., Master E.R. // Microorganisms. 2018. V. 6. № 1. P. 3–23. https://doi.org/10.3390/microorganisms6010003
  7. Wösten H.A.B. // Annual Reviews in Microbiology. 2001. V. 55. № 1. P. 625–646. https://doi.org/10.1146/annurev.micro.55.1.625
  8. Gandier J.A., Langelaan D.N., Won A., O’Donnell K., Grondin J.L., Spencer H.L., Wong P., Tillier E., Yip C., Smith S.P., Master E.R. // Scientific Reports. 2017. V. 7. № 45863. P. 1–9. https://doi.org/10.1038/srep45863
  9. Jensen B.G., Andersen M.R., Pedersen M.H., Frisvad J.C., Sondergaard I.B. // BMC Research Notes. 2010. V. 3. № 1. P. 1–6. https://doi.org/10.1186/1756-0500-3-344
  10. Ball S.R., Kwan A.H., Sunde M. // The Fungal Cell Wall: An Armour and a Weapon for Human Fungal Pathogens. 2020. V. 425. P. 29–51. https://doi.org/10.1007/82_2019_186
  11. Morris V.K., Kwan A.H., Sunde M. // Journal of molecular biology. 2013. V. 425. № 2. P. 244–256. https://doi.org/10.1016/j.jmb.2012.10.021
  12. Pham C.L.L., Rey A., Lo V., Soules M., Ren Q., Meisl G., Knowles T.P.S., Kwan A.H., Sunde M. // Scientific reports. 2016. V. 6. № 25288. P. 1–16. https://doi.org/10.1038/srep25288
  13. Hektor H.J., Scholtmeijer K. // Current opinion in biotechnology. 2005. V. 16. № 4. P. 434–439. https://doi.org/10.1016/j.copbio.2005.05.004
  14. Szilvay G.R. Self-assembly of hydrophobin proteins from the fungus Trichoderma reesei // Ed. M. Linder. Finland: VTT Publications, 2007. 70 p.
  15. Tanaka T., Terauchi Y., Yoshimi A., Abe K. // Microorganisms. 2022. V. 10. № 8. P. 1498–1522. https://doi.org/10.3390/microorganisms10081498
  16. Kisko K., Szilvay G.R., Vainio U., Linder M.B., Serimaa R. // Biophysical journal. 2008. V. 94. № 1. P. 198–206. https://doi.org/10.1529/biophysj.107.112359
  17. Linder M.B. // Current Opinion in Colloid & Interface Science. 2009. V. 14. № 5. P. 356–363. https://doi.org/10.1016/j.cocis.2009.04.001
  18. Scholtmeijer K., Janssen M., Gerssen B., de Vocht M.L., van Leeuwen B.M., van Kooten T.G., Wosten H.A.B., Wessels J.G.H. // Applied and Environmental Microbiology. 2002. V. 68. № 3. P. 1367–1373. https://doi.org/0.1128/AEM.68.3.1367-1373.2002
  19. Vereman J., Thysens T., Weiland F., Impe J.V., Derdelinckx G., de Voorde I.V. // Process Biochemistry. 2023. V. 130. P. 455–463. https://doi.org/10.1016/j.procbio.2023.05.008
  20. De Groot P.W.J., Roeven R.T.P., van Griencven L.J.L.D., Visser J., Schaap P.J. // Microbiology. 1999. V. 145. № 5. P. 1105–1113.
  21. Lugones L.G., Wös H.A.B., Wessels J.G.H. // Microbiology. 1998. V. 144. № 8. P. 2345–2353. https://doi.org/10.1099/00221287-144-8-2345
  22. Valsecchi I., Dupres V., Stephen-Victor E., Guijarro J.I., Gibbons J., Beau R., Bayry J., Coppee J.-Y., Lafont F., Latge J.-P., Beauvais A. // Journal of fungi. 2017. V. 4. № 1. P. 2–20. https://doi.org/10.3390/jof4010002
  23. Littlejohn K.A., Hooley P., Cox P.W. // Food Hydrocolloids. 2012. V. 27. № 2. P. 503–516. https://doi.org/10.1016/j.foodhyd.2011.08.018
  24. Winandy L., Hilpert F., Schlebusch O., Fisher R. // Scientific reports. 2018. V. 8. № 12033. P. 1–11. https://doi.org/10.1038/s41598-018-29749-0
  25. Ahn S.O., Lim H.-D., You S.-H., Cheong D.-E., Kim G.-J. // International Journal of Molecular Sciences. 2021. V. 22. № 7843. P. 1–11. https://doi.org/10.3390/ijms22157843
  26. Terauchi Y., Nagayama M., Tanaka T., Tanabe H., Yoshimi A., Nanatani K., Yabu H., Arita T., Higuchi T., Kameda T., Abe K. // Applied and environmental microbiology. 2022. V. 88. № e0208721. P. 1-21. https://doi.org/10.1128/AEM.02087-21
  27. Moonjely S., Keyhani N.O., Bidochka M.J. // Microbiology. 2018. V. 164. № 4. P. 517–528. https://doi.org/10.1099/mic.0.000644
  28. Lacroix H., Spanu P.D. // Applied and environmental microbiology. 2009. V. 75. № 2. P. 542–546. https://doi.org/10.1128/AEM.01816-08
  29. Mesarich C.H., Okmen B., Rovenich H., Griffiths S.A., Wang C., Jashni M.K., Mihajlovski A., Collemare J., Hunziker L., Deng C.H., van der Burgt A., Beenen H.G., Templeton M.D., Bradshaw R.E., de Wit P.J.G.M. // Molecular plant-microbe interactions. 2018. V. 31. № 1. P. 145–162. https://doi.org/10.1094/MPMI-05-17-0114-FI
  30. Weichel M., Schmid-Grendelmeier P., Rhyner C., Achatz G., Blaser K., Crameri R. // Clinical & Experimental Allergy. 2003. V. 33. № 1. P. 72–77. https://doi.org/10.1046/j.1365-2222.2003.01574.x
  31. Turgut B.A., Ortucu S. // Preparative Biochemistry and Biotechnology. 2023. V. 53. № 10. https://doi.org/10.1080/10826068.2023.2201930
  32. De Vries O.M., Moore S., Arntz S., Wessels J.G., Tudzynski P. European journal of biochemistry. 1999. V. 262. № 2. P. 377–385. https://doi.org/10.1046/j.1432-1327.1999.00387.x
  33. Mey G., Correia T., Oeser B., Kershaw M.J., Garre V., Arntz C., Talbot N.J., Tudzynski P. // Molecular Plant Pathology. 2003. V. 4. № 1. P. 31–41. https://doi.org/10.1046/j.1364-3703.2003.00138.x
  34. Ásgeirsdóttir S.A., Halsall J.R., Casselton L.A. // Fungal Genetics and Biology. 1997. V. 22. № 1. P. 54–63. https://doi.org/10.1006/fgbi.1997.0992
  35. Li X., Wang F., Xu Y., Liu G., Dong C. // International Journal of Molecular Sciences. 2021. V. 22. № 2. P. 643–660. https://doi.org/10.3390/ijms22020643
  36. So K.K., Kim D.H. // Mycobiology. 2017. V. 45. № 4. P. 362–369. https://doi.org/10.5941/MYCO.2017.45.4.362
  37. Trembley M.L., Ringli C., Honegger R. // New Phytologist. 2002. V. 154. № 1. P. 185–195. https://doi.org/10.1046/j.1469-8137.2002.00360.x
  38. Kim H.I., Lee C.S., Park Y.J. // Mycoscience. 2016. V. 57. № 5. P. 320–325. https://doi.org/10.1016/j.myc.2016.04.004
  39. Stübner M., Lutterschmid G., Vogel R.F., Niessen L. // International journal of food microbiology. 2010. V. 141. № 1-2. P. 110–115. https://doi.org/10.1016/j.ijfoodmicro.2010.03.003
  40. Zapf M.W., Theisen S., Vogel R.F., Niessen L. // Journal of the Institute of Brewing. 2006. V. 112. № 3. P. 237–245. https://doi.org/10.1002/j.2050-0416.2006.tb00719.x
  41. Quarantin A., Hadeler B., Kroger C., Schafer W., Favaron F., Sella L., Martinez-Rocha A.L. // Frontiers in Microbiology. 2019. V. 10. P. 751–770. https://doi.org/10.3389/fmicb.2019.00751
  42. Sarlin T., Kivioja T., Kalkkinen N., Linder M.B., Nakari-Setala T. // Journal of basic microbiology. 2012. V. 52. № 2. P. 184–194. https://doi.org/10.1002/jobm.201100053
  43. Minenko E., Vogel R.F., Niessen L. // Fungal biology. 2014. V. 118. № 4. P. 385–393. https://doi.org/10.1016/j.funbio.2014.02.003
  44. Niu C., Payne G.A., Woloshuk C.P. // BMC microbiology. 2015. V. 15. № 1. P. 1–11. https://doi.org/10.1186/s12866-015-0427-3
  45. Song D., Gao Z., Zhao L., Wang X., Xu H., Bai Y., Zhang X., Linder M.B., Feng H., Qiao M. // Protein expression and purification. 2016. V. 128. P. 22–28. https://doi.org/10.1016/j.pep.2016.07.014
  46. Yang J., Ge L., Song B., Ma Z., Yang X., Wang B., Dai Y., Xu H., Qiao M. // Frontiers in Microbiology. 2022. V. 13. № 990231. P. 1–13. https://doi.org/10.3389/fmicb.2022.990231
  47. Ma Z., Song B., Yu J., Yang Z., Han Z., Yang J., Wang B., Song D., Xu H., Qiao M. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2023. V. 656. № 130344. P. 1–4. https://doi.org/10.1016/j.colsurfa.2022.130344
  48. Kim S., Ahn I.P., Rho H.S., Lee Y.H. // Molecular Microbiology. 2005. V. 57. № 5. P. 1224–1237. https://doi.org/10.1111/j.1365-2958.2005.04750.x
  49. Jiang Z.Y., Ligoxygakis P., Xia Y.X. // International Journal of Biological Macromolecules. 2020. V. 165. P. 1303–1311. https://doi.org/10.1016/j.ijbiomac.2020.09.222
  50. Mackay J.P., Matthews J.M., Winefield R.D., Mackay L.G., Haverkamp R.G., Templeton M.D. // Structure. 2001. V. 9. № 2. P. 83–91. https://doi.org/10.1016/s0969-2126(00)00559-1
  51. Ren Q., Kwan A.H., Sunde M. // Proteins. 2014. V. 82. № 6. P. 990–1003. https://doi.org/10.1002/prot.24473
  52. Temple B., Horgen P.A. // Mycologia. 2000. V. 92. № 1. P. 1-9. https://doi.org/10.2307/3761443
  53. Zelena K., Takenberg M., Lunkenbein S., Woche S.K., Nimtz M., Berger R.G. // Biotechnology and Applied Biochemistry. 2013. V. 60. № 2. P. 147–154. https://doi.org/10.1002/bab.1077
  54. Vigueras G., Shirai K., Hernandez-Guerrero M., Morales M., Revah S. // Process Biochemistry. 2014. V. 49. № 10. P. 1606–1611. https://doi.org/10.1016/j.procbio.2014.06.015
  55. Albuquerque P., Kyaw C.M., Saldanha R.R., Brigido M.M., Felipe M.S.S., Silva-Pereira I. // Fungal Genetics and Biology. 2004. V. 41. № 5. P. 510–520. https://doi.org/10.1016/j.fgb.2004.01.001
  56. Tagu D., de Bellis R., Balestrini R., de Vries O.M.H., Piccoli G., Stocchi V., Bonfante P., Martin F. // New Phytologist. 2001. V. 149. № 1. P. 127–135. https://doi.org/10.1046/j.1469-8137.2001.00009.x
  57. Acioli-Santos B., Sebastiana M., Pessoa F., Sousa L., Figueiredo A., Fortes A.M., Balde A., Maia L.C., Pais M.S. // Current microbiology. 2008. V. 57. № 6. P. 620–625. https://doi.org/10.1007/s00284-008-9253-2
  58. Rafeeq C.M., Vaishnav A.B., Ali P.P.M. // Protein Expression and Purification. 2021. V. 182. № 105834. P. 1–6. https://doi.org/10.1016/j.pep.2021.105834
  59. Zhang R.Y., Hu D.D., Gu J.G., Zhang J.X., Goodwin P.H., Hu Q.X. // European journal of plant pathology. 2015. V. 143. P. 823–831. https://doi.org/10.1007/s10658-015-0734-4
  60. Xu D., Wang Y., Keerio A.A., Ma A. // Microbiological Research. 2021. V. 247. № 126723. P. 1–14. https://doi.org/10.1016/j.micres.2021.126723
  61. Kulkarni S.S., Nene S.N., Joshi K.S. // Protein Expression and Purification. 2022. V. 195–196. № 106095. https://doi.org/10.1016/j.pep.2022.106095
  62. Van Wetter M.A., Wösten H.A., Wessels J.G. // Molecular microbiology. 2000. V. 36. № 1. P. 201–210. https://doi.org/10.1046/j.1365-2958.2000.01848.x
  63. Askolin S., Linder M., Scholtmeijer K., Tenkanen M., Penttila M., de Vocht M.L., Wosten H.A.B. // Biomacromolecules. 2006. V. 7. № 4. P. 1295–1301. https://doi.org/10.1021/bm050676s
  64. Kuvarina A.E., Rogozhin E.A., Sykonnikov M.A., Timofeeva A.V., Serebryakova M.V., Fedorova N.V., Kokaeva L.Y., Efimenko T.A., Georgieva M.L., Sadykova V.S. // Journal of Fungi. 2022. V. 8. № 7. P. 1–11. https://doi.org/10.3390/jof8070659
  65. Huang Y., Mijiti G., Wang Z., Yu W., Fan H., Zhang R., Liu Z. // Microbiological Research. 2015. V. 171. P. 8–20. https://doi.org/10.1016/j.micres.2014.12.004
  66. Seidl-Seiboth V., Gruber S., Sezerman U., Schwecke T., Albayrak A., Neuhof T., von Dohren H., Baker S.E., Kubicek C.P. // Journal of molecular evolution. 2011. V. 72. P. 339–351. https://doi.org/10.1007/s00239-011-9438-3
  67. Puglisi I., Faedda R., Sanzaro V., Lo Piero A.R., Petrone G., Cacciola S.O. // Gene. 2012. V. 506. № 2. P. 325–330. https://doi.org/10.1016/j.gene.2012.06.091
  68. He R., Li C., Feng J., Zhang D. // FEMS microbiology letters. 2017. V. 364. № 8. P. 1–21. https://doi.org/10.1093/femsle/fnw297
  69. Alamprese C., Rollini M., Musatti A., Ferranti P., Barbiroli A. // LWT. 2022. V. 157. № 113060. P. 1–7. https://doi.org/10.1016/j.lwt.2021.113060
  70. Mankel A., Krause K., Kothe E. //Applied and Environmental Microbiology. 2002. V. 68. № 3. P. 1408–1413. https://doi.org/10.1128/AEM.68.3.1408-1413.2002
  71. Sammer D., Krause K., Gube M., Wagner K., Kothe E. // PLoS One. 2016. V. 11. № e0167773. P. 1–20. https://doi.org/10.1371/journal.pone.0167773
  72. Scherrer S., de Vries O.M.H., Dudler R., Wessels J.G.H., Honegger R. // Fungal Genetics and Biology. 2000. V. 30. № 1. P. 81–93. https://doi.org/10.1006/fgbi.2000.1205
  73. Kershaw M.J., Talbot N.J. // Fungal Genetics and Biology. 1998. V. 23. № 1. P. 18–33. https://doi.org/10.1006/fgbi.1997.1022.
  74. Mgbeahuruike A.C., Kovalchuk A., Asiegbu F.O. // Mycologia. 2013. V. 105. № 6. P. 1471–1478. https://doi.org/10.3852/13-077.
  75. Bouqellah N.A., Farag P.F. // Microorganisms. 2023. V. 11. № 2632. P. 1-19. https://doi.org/10.3390/microorganisms11112632.
  76. Ruocco M., Lanzuise S., Lombardi N., Woo S.L., Vinale F., Marra R., Varlese R., Manganiello G., Pascale A., Scala V., Turrà D., Scala F., Lorito M. // Mol. Plant. Microbe Interact. 2015. V. 28. № 2. P. 167–179. https://doi.org/10.1094/MPMI-07-14-0194-R.
  77. Kazmierczak P., Kim D.H., Turina M., Van Alfen N.K. // Eukaryot. Cell. 2005. V. 4. № 5. P. 931–936. https://doi.org/10.1128/EC.4.5.931-936.2005.
  78. Gallo M., Luti S., Baroni F., Baccelli I., Cilli E.M., Cicchi C., Leri M., Spisni A., Pertinhez T.A., Pazzagli L. // Int. J. Mol. Sci. 2023. V. 24. № 2251. P. 1–18. https://doi.org/10.3390/ijms24032251
  79. Buchanan J.A., Varghese N.R., Johnston C.L., Sunde M. // Journal of Molecular Biology. 2023. V. 435. № 167919. P. 1–22. https://doi.org/10.1016/j.jmb.2022.167919.
  80. Kashyap V.K., Mishra A., Bordoloi S., Varma A., Joshi N.C. // Mycoses. 2023. V. 66. № 9. P. 737–754. https://doi.org/10.1111/myc.13619.
  81. Latgé J.-P. // Fungal Biology. 2023. V. 127. № 7–8. P. 1259–1266. https://doi.org/10.1016/j.funbio.2023.05.001.
  82. Cai F., Gao R., Zhao Z., Ding M., Jiang S., Yagtu C., Zhu H., Zhang J., Ebner T., Mayrhofer-Reinhartshuber M., Kainz P., Chenthamara K., Akcapinar G.B., Shen Q., Druzhinina I.S. // ISME J. 2020. V. 14. № 10. P. 2610–2624. https://doi.org/10.1038/s41396-020-0709-0
  83. Luciano-Rosario D., Eagan J.L., Aryal N., Dominguez E.G., Hull C.M., Keller N.P. // mBio. 2022. V. 13. № e0275422. P. 1–12. https://doi.org/10.1128/mbio.02754-22.
  84. Kulkarni S., Nene S., Joshi K. // Process Biochemistry. 2017. V. 61. P. 1–11. https://doi.org/10.1016/j.procbio.2017.06.012
  85. Stanzione I., Pitocchi R., Pennacchio A., Cicatiello P., Piscitelli A., Giardina P. // Frontiers in Molecular Biosciences. 2022. V. 9. № 959166. P. 1–9. https://doi.org/10.3389/fmolb.2022.959166
  86. Kirkland B.H., Keyhani N.O. // J. Ind. Microbiol. Biotechnol. 2011. V. 38. № 2. P. 327–335. https://doi.org/10.1007/s10295-010-0777-7
  87. Rieder A., Ladnorg T., Wöll C., Obst U., Fischer R., Schwartz T. // Biofouling. 2011. V. 27. № 10. P. 1073–1085. https://doi.org/10.1080/08927014.2011.631168
  88. Janssen M.I., Leeuwen M.B.M., van Kooten T.G., Vries J., Dijkhuizen L., Wösten H.A.B. // Biomaterials. 2004. V. 25. № 14. P. 2731–2739. https://doi.org/10.1016/j.biomaterials.2003.09.060
  89. Bimbo L.M., Mäkilä E., Raula J., Laaksonen T., Laaksonen P., Strommer K., Kauppinen E.I., Salonen J., Linder M.B., Hirvonen J., Santos H.A. // Biomaterials. 2011. V. 32. № 34. P. 9089–9099. https://doi.org/10.1016/j.biomaterials.2011.08.011
  90. Linder M.B., Szilvay G.R., Nakari-Setälä T., Penttilä M.E. // FEMS Microbiol. Rev. 2005. V. 29. № 5. P. 877–896. https://doi.org/10.1016/j.femsre.2005.01.004
  91. Khalesi M., Gebruers K., Derdelinckx G. // Protein J. 2015. V. 34. № 4. P. 243–255. https://doi.org/10.1007/s10930-015-9621-2
  92. Chakarova S.D., Carlsson A.E. // Phys. Rev. E. 2004. V. 69. № 021907. P. 1–9. https://doi.org/10.1103/PhysRevE.69.021907
  93. Scognamiglio V., Arduini F., Palleschi G., Rea G. // Trac. Trends Anal. Chem. 2014. V. 62. P. 1–10. https://doi.org/10.1016/j.trac.2014.07.007
  94. Tao J., Chang Y., Liang J., Duan X., Pang W., Wang Y., Wang Z. // Appl. Phys. Lett. 2019. V. 115. № 163502. P. 1–5. https://doi.org/10.1063/1.5124525
  95. Fitzgerald J.E., Bui E.T.H., Simon N.M., Fenniri H. // Trends Biotechnol. 2017. V. 35. P. 33–42. https://doi.org/10.1016/j.tibtech.2016.08.005
  96. Piscitelli A., Pennacchio A., Longobardi S., Velotta R., Giardina P. // Biotechnol. Bioeng. 2017. V. 114. P. 46–52. https://doi.org/10.1002/bit.26049
  97. Barani M., Mirzaei M., Torkzadeh-Mahani M., Lohrasbi-Nejad A., Nematollahi M.H. // Materials Science & engineering. C, Materials for Biological Applications. 2020. V. 113. № 110975. P. 1–8. https://doi.org/10.1016/j.msec.2020.110975
  98. Reuter L.J., Shahbazi M.-A., Mäkilä E.M., Salonen J.J., Saberianfar R., Menassa R., Santos H.A., Joensuu J.J., Ritala A. // Bioconjug. Chem. 2017. V. 28. P. 1639–1648. https://doi.org/10.1021/acs.bioconjchem.7b00075
  99. Wang B., Han Z., Song B., Yu L., Ma Z., Xu H., Qiao M. // Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2021. V. 628. № 127351. P. 1–9. https://doi.org/10.1016/j.colsurfa.2021.127351
  100. VanEpps J.S., Younger J.G. // Shock. 2016. V. 46. P. 597–608. https://doi.org/10.1097/SHK.0000000000000692
  101. Maan A.M.C., Hofman A.H., de Vos W.M., Kamperman M. // Advanced Functional Materials. 2020. V. 30. № 2000936. P. 1–30. https://doi.org/10.1002/adfm.202000936
  102. Artini M., Cicatiello P., Ricciardelli A., Papa R., Selan L., Dardano P., Tilotta M., Vrenna G., Tutino M.L., Giardina P., Parrilli E. // Biofouling. 2017. V. 33. P. 601–611. https://doi.org/10.1080/08927014.2017.1338690
  103. Devine R., Singha P., Handa H. // Biomater. Sci. 2019. V. 7. P. 3438–3449. https://doi.org/10.1039/c9bm00469f
  104. Boeuf S., Throm T., Gutt B., Strunk T., Hoffmann M., Seebach E., Muhlberg L., Brocher J., Gotterbarm T., Wenzel W., Fischer R., Richter W. // Acta Biomater. 2012. V. 8. P. 1037–1047. https://doi.org/10.1016/j.actbio.2011.11.022
  105. Patent CN107308501A. Method for loading bioactive protein onhydrophobic stent material. Shufang, W., Li, J., Tang, D. 2017.
  106. Kuvarina A.E., Georgieva M.L., Rogozhin E.A., Kulko A.B., Gavryushina I.A., Sadykova V.S. // Applied Biochemistry and Microbiology. 2021. V. 57. № 1. P. 86–93. https://doi.org/10.1134/S0003683821010142

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Primary structure of hydrophobins. Blue lines indicate the amino acid sequence, red numbers indicate the chain length, “Cys” circles indicate cysteines in the amino acid chain [10].

Download (23KB)

Copyright (c) 2024 Russian Academy of Sciences