Recombinant Chymotrypsin-Like Peptidase from Tenebrio molitor with a Non-Canonical Substrate-Binding Site
- Authors: Tereshchenkova V.F.1, Zhiganov N.I.2, Gubaeva A.S.1, Akentyev F.I.3,4, Dunaevsky Y.E.5, Kozlov D.G.3, Belozersky M.A.5, Elpidina E.N.5
-
Affiliations:
- Lomonosov Moscow State University, Faculty of Chemistry
- Lomonosov Moscow State University, Faculty of Biology
- National Research Center “Kurchatov Institute”
- “Kurchatov Genome Center”, National Research Center “Kurchatov Institute”
- Lomonosov Moscow State University, A.N. Belozersky Research Institute of Physico-Chemical Biology
- Issue: Vol 60, No 3 (2024)
- Pages: 254-265
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674552
- DOI: https://doi.org/10.31857/S0555109924030045
- EDN: https://elibrary.ru/EXBTGS
- ID: 674552
Cite item
Abstract
We characterized an alkaline chymotrypsin-like serine peptidase from the yellow mealworm Tenebrio molitor with a non-canonical substrate-binding subsite for its possible application as a component (an additive) in various biological products. The enzyme was obtained as a recombinant preparation. Purification was carried out using affinity chromatography on Ni2+-NTA agarose. The specificity constants (kcat/KM) for the chymotrypsin substrates, Glp-AAF-pNA, Suc-AAPF-pNA, and Ac-Y-pNA were 7, 4.2 and 0.9 (µM∙min)–1, respectively. Optimum of the proteolytic activity was observed at pH 9.0. The enzyme was stable at the alkaline pH range, and in the presence of BSA also in the acidic region. Peptidase was inhibited by synthetic inhibitors such as PMSF, TPCK, chymostatin, while EDTA, E-64, and pepstatin had no effect on the enzyme activity. The purified enzyme showed high stability over time in the presence of BSA. The short life cycle of the insect and the production of a large number of peptidases in the midgut with high catalytic activity and stability can make T. molitor an excellent alternative source of industrially important enzymes for application as components (additives) in various biological products (e. g., stain removers, detergents, etc.).
Full Text

About the authors
V. F. Tereshchenkova
Lomonosov Moscow State University, Faculty of Chemistry
Author for correspondence.
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
N. I. Zhiganov
Lomonosov Moscow State University, Faculty of Biology
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
A. S. Gubaeva
Lomonosov Moscow State University, Faculty of Chemistry
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
F. I. Akentyev
National Research Center “Kurchatov Institute”; “Kurchatov Genome Center”, National Research Center “Kurchatov Institute”
Email: elp@belozersky.msu.ru
Russian Federation, Moscow; Moscow
Ya. E. Dunaevsky
Lomonosov Moscow State University, A.N. Belozersky Research Institute of Physico-Chemical Biology
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
D. G. Kozlov
National Research Center “Kurchatov Institute”
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
M. A. Belozersky
Lomonosov Moscow State University, A.N. Belozersky Research Institute of Physico-Chemical Biology
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
E. N. Elpidina
Lomonosov Moscow State University, A.N. Belozersky Research Institute of Physico-Chemical Biology
Email: elp@belozersky.msu.ru
Russian Federation, Moscow
References
- de Souza A.N., Martins M.L. // Braz. J. Microbiol. 2001. V. 32. № 4. P. 271–275. https://doi.org/10.1590/S1517-83822001000400003
- Zambare V.P., Nilegaonkar S.S., Kanekar P.P. // World J. Microbiol. Biotechnol. 2007. V. 23. P. 1569–1574. https://doi.org/10.1007/s11274-007-9402-y
- Abidi F., Limam F., Nejib M.M. // Process Biochem. 2008. V. 43. № 11. P. 1202–1208. https://doi.org/10.1016/ j.procbio.2008.06.018
- Kumar C.G., Takagi H. // Biotechnol. Adv. 1999. V. 17. № 7. P. 561–594. https://doi.org/10.1016/s0734-9750(99)00027-0
- Singh J., Vohra R., Sahoo D. // Biotechnol. Lett. 1999. V. 21. P. 921–924. https://doi.org/10.1023/A:1005502824637
- Anwar A., Saleemuddin M. // Arch. Insect. Biochem. Physiol. 2002. V. 51. № 1. P. 1–12. https://doi.org/10.1002/arch.10046
- Vinokurov K.S., Elpidina E.N., Oppert B., Prabhakar S., Zhuzhikov D.P., Dunaevsky Y.E., Belozersky M.A. // Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 2006 b. V. 145. № 2. P. 138–146. https://doi.org/10.1016/j.cbpb.2006.05.004
- Sanatan P.T., Lomate P.R., Giri A.P., Hivrale V.K. // BMC Biochem. 2013. V. 14. https://doi.org/10.1186/1471-2091-14-32
- Sharifi M., Chitgar M.G., Ghadamyari M., Ajamhasani M. // Romanian Journal of Biochemistry. 2012. V. 49. № 1. P. 33–47.
- Mahdavi A., Ghadamyari M., Sajedi R.H., Sharifi M., Kouchaki B. // J. Insect Sci. 2013. V. 13. https://doi.org/10.1673/031.013.8101
- Zou Z., Lopez D.L., Kanost M.R., Evans J.D., Jiang H. // Insect Mol. Biol. 2006. V. 15. № 5. P. 603–614. https://doi.org/10.1111/j.1365–2583.2006.00684.x
- Choo Y.M., Lee K.S., Yoon H.J., Lee S.B., Kim J.H., Sohn H.D., Jin B.R. // Eur. J. Entomol. 2007. V. 104. № 1. P. 1–7. https://doi.org/10.14411/eje.2007.001
- Jiang H., Vilcinskas A., Kanost M.R. // Adv. Exp. Med. Biol. 2010.V. 708. P. 181–204. https://doi.org/10.1007/978-1-4419-8059-5_10
- Kanost M.R., Jiang H. // Curr. Opin. Insect Sci. 2015. V. 11. P. 47–55. https://doi.org/10.1016/j.cois.2015.09.003
- Cao X., Jiang H. // Insect Biochem. Mol. Biol. 2018. V. 103. P. 53–69. https://doi.org/10.1016/j.ibmb.2018.10.006
- Cao X., Gulati M., Jiang H. // Insect Biochem. Mol. Biol. 2017. V. 88. P. 48–62. https://doi.org/10.1016/j.ibmb.2017.07.008
- Lin H., Xia X., Yu L., Vasseur L., Gurr G. M., Yao F., Yang G., You M. // BMC Genomics. 2015. V. 16. Article 1054. https://doi.org/10.1186/s12864-015-2243-4
- Elpidina E.N., Tsybina T.A., Dunaevsky Y.E., Belozersky M.A., Zhuzhikov D.P., Oppert B. // Biochimie. 2005. V. 87. № 8. P. 771–779. https://doi.org/10.1016/j.biochi.2005.02.013
- Sato P.M., Lopes A.R., Juliano L., Juliano M.A., Terra W.R. // Insect Biochem. Mol. Biol. 2008. V. 38. № 6. P. 628–633. https://doi.org/10.1016/j.ibmb.2008.03.006
- Perona J.J., Tsu C.A., Craik C.S., Fletterick R.J. // Biochemistry. 1997. V. 36. № 18. P. 5381–5392. https://doi.org/10.1021/bi9617522
- Bown D.P., Wilkinson H.S., Gatehouse J.A. // Insect Biochem. Mol. Biol. 1997. V. 27. № 7. P. 625–638. https://doi.org/10.1016/s0965-1748(97)00043-x
- Tsu C.A., Perona J.J.., Schellenberger V., Turck C.W., Craik C.S. //J. Biol. Chem. 1994. V. 269. № 30. P. 19565–19572.
- Tsu C.A., Craik C.S. // J. Biol. Chem. 1996. V. 271. № 19. P. 11563–11570. https://doi.org/10.1074/jbc.271.19.11563
- Whitworth S.T., Blum M.S., Travis J. // J. Biol. Chem. 1998. V. 273. № 23. P. 14430–14434. https://doi.org/10.1074/jbc.273.23.14430
- Houben-Weyl Methods of Organic Chemistry: Synthesis of Peptides and Peptidomimetics, 4th Ed. V. E22a. In: / Eds. Goodman M., Toniolo C., Moroder L., Felix A. Stuttgart, NY: Thieme, 2004. 785 p.
- Горбунов А.А., Акентьев Ф.И., Губайдуллин И.И., Жиганов Н.И., Терещенкова В.Ф., Элпидина Е.Н., Козлов Д.Г. // Биотехнология. 2020. Т. 36. № 6. С. 136–145.
- Frugoni J.A.C. // Gazz. Chem. Ital. 1957. V. 87. P. 403–407.
- Elpidina E.N., Semashko T.A., Smirnova Y.A., Dvoryakova E.A., Dunaevsky Y.E., Belozersky M.A., et al. // Anal. Biochem. 2019. V. 567. P. 45–50. https://doi.org/10.1016/j.ab.2018.12.001
- Krahn J., Stevens F.C. // Biochemistry. 1970. V. 9. № 13. P. 2646–2652. https://doi.org/ 10.1021/bi00815a013
- De Vonis Bidlingmeyer U., Leary T.R., Laskowski M.Jr. // Biochemistry. 1972. V. 11. № 17. P. 3303–3310. https://doi.org/10.1021/bi00767a028
- Vinokurov K.S., Elpidina E.N., Oppert B., Prabhakar S., Zhuzhikov D.P., Dunaevsky Y.E., Belozersky M.A. // Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006 a. V. 145. № 2. P. 126–137. https://doi.org/10.1016/j.cbpb.2006.05.005
- Zhu Y.C., Baker J.E. // Arch. Insect. Biochem. Physiol. 2000. V. 43. № 4. P. 173–184. https://doi.org/10.1002/(SICI)1520-6327(200004) 43:4<173:: AID-ARCH3>3.0.CO;2-8
- Mazumdar-Leighton S., Broadway R.M. // Insect Biochem. Mol. Biol. 2001. V. 31. № 6–7. P. 633–644. https://doi.org/10.1016/s0965-1748(00)00168-5
- Herrero S., Combes E., Van Oers M.M., Vlak J.M., de Maagd R.A., Beekwilder J. // Insect Biochem. Mol. Biol. 2005. V. 35. № 10. P. 1073–1082. https://doi.org/10.1016/j.ibmb.2005.05.006
- Tamaki F.K., Padilha M.H., Pimentel A.C., Ribeiro A.F., Terra W. R. // Insect Biochem. Mol. Biol. 2012. V. 42. № 7. P. 482–490. https://doi.org/10.1016/j.ibmb.2012.03.005
- Matsuoka T., Kawashima T., Nakamura T., Yabe T. // Biosci. Biotechnol. Biochem. 2017. V. 81. № 7. P. 1401–1404. https://doi.org/10.1080/09168451.2017.1318698
- Gráf L., Szilágyi L., Venekei I. Chapter 582 – Chymotrypsin. Handbook of Proteolytic Enzymes. 3 Ed. In: / Eds. Rawlings N. D., Salvesen G. Academic Press, 2013. P. 2626–2633. https://doi.org/10.1016/B978-0-12-382219-2.00582-2
- Botos I., Meyer E., Nguyen M., Swanson S.M., Koomen J.M., Russell D.H, Meyer E.F. // J. Mol. Biol. 2000. V. 298. № 5. P. 895–901. https://doi.org/10.1006/jmbi.2000.3699
- Perona J.J., Craik C.S. // Protein Sci. 1995. V. 4. № 3. P. 337–360. https://doi.org/10.1002/pro.5560040301
Supplementary files
