Preparation of antibacterial composite aerogel for biomedical purposes based on alginate-chitosan complex and calcium carbonate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Aerogel composites were synthesized on the basis of the sodium alginate-chitosan interpolymer complex with the inclusion of calcium carbonate microparticles and supercritical drying. It is shown that the textural characteristics of materials do not depend on the morphology of calcium carbonate particles: the specific surface area of aerogels is almost the same for all materials and amounts to 380–400 m2/g. The developed porous structure of composites along with the polyelectrolyte nature determines their high water absorption — up to 110 g/g. To impart antimicrobial properties, the materials were impregnated with atranorin isolated from the lichen Hypogymnia physodes, which has a pronounced inhibitory effect on the bacterium Proteus mirabilis, which is the main causative agent of wound infections. The minimum suppressive concentration of atranorine is 1 mg/ml. The release of the main amount of atranorine aerosol material included in the matrix occurs within 4 hours and amounts to 50%.

Full Text

Restricted Access

About the authors

N. A. Gorshkova

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: nat.gorshkova@mail.ru
Russian Federation, 163020, Arkhangelsk

O. S. Brovko

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: nat.gorshkova@mail.ru
Russian Federation, 163020, Arkhangelsk

I. A. Palamarchuk

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Email: nat.gorshkova@mail.ru
Russian Federation, 163020, Arkhangelsk

A. D. Ivahnov

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences; Northern (Arctic) Federal University named after M. V. Lomonosov

Email: nat.gorshkova@mail.ru
Russian Federation, 163020, Arkhangelsk; 163000, Arkhangelsk

N. I. Bogdanovich

Northern (Arctic) Federal University named after M. V. Lomonosov

Email: nat.gorshkova@mail.ru
Russian Federation, 163000, Arkhangelsk

T. Ya. Vorob’eva

N. Laverov Federal Center for Integrated Arctic Research of the Ural Branch of the Russian Academy of Sciences

Author for correspondence.
Email: nat.gorshkova@mail.ru
Russian Federation, 163020, Arkhangelsk

References

  1. Щипунов Ю. А., Постнова И. В. // Коллоидный журнал. 2011. Т. 73. № . 4. С. 555–564.
  2. Кудряшова И.С., Марков П. А., Костромина Е. Ю., Еремин П. С., Рачин А. П., Гильмутдинова И. Р. // Вестник восстановительной медицины. 2021. Т. 20. № 6. С. 84–95.
  3. Стабаева Г.С., Мусаев А. Т., Угланов Ж. Ш., Алдабергенов Е. Н., Кани А. Н., Курбатов А. В., Тажи-ев Т. С. // Международный журнал прикладных и фундаментальных исследований. 2016. Т. 10. С. 235–239.
  4. Ogaji I.J., Nep E. I., Audu-Peter J.D. // Pharm. Anal. Acta 2012. V. 3. № 1. P. 1000146. https://doi.org/10.4172/2153–2435.1000146
  5. Prajapati S.K., Jain A., Jain A., Jain S. // European Polymer Journal. 2019. V. 120. P. 109–191.
  6. Gorshkova N., Brovko O., Palamarchuk I., Bogolitsyn K., Ivakhnov A., Bogdanovich N. et al. // J. Sol-Gel Science and Technology. 2020. V. 95. № 1. P. 101–108.
  7. Brovko O. S., Palamarchuk I. A., Boitsova T. A., Bogolitsyn K. G., Valchuk N. A., Chukhchin D. G. // Macro-molecular Research. 2015. V. 23. P. 1059–1067.
  8. Valchuk N.A., Brovko O. S., Palamarchuk I. A., Boitsova T. A., Bogolitsyn K. G., Ivakhnov A. D. et al. // Rus-sian Journal of Physical Chemistry B. 2019. V. 13. № 7. P. 1121–1124.
  9. Gorshkova N. A., Brovko O. S., Palamarchuk I. A., Bogolitsyn K. G. // Appl. Biochem. Microbiol. 2022. V. 58. № . 2. P. 110–117.
  10. Кузнецова Т. А., Андрюков Б. Г., Беседнова Н. Н., Хотимченко Ю. С. // Биология моря. 2021. Т. 47. № 1. С. 3–12.
  11. Andersen Th. // Carbohydrate Chemistry. 2012. V. 37. P. 227–258.
  12. Smetana K. Jr. // Biomaterials. 1993. V. 14. P. 1046–1050.
  13. Быканова О. Н., Максимова С. Н., Тарасенко Г. А. // Известия высших учебных заведений. Пищевая технология. 2009. № 1. С. 34–36.
  14. Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F. K., Wu K. C.W., Yamauchi Y. // Bulletin of the Chemical So-ciety of Japan. 2015. V. 88. P. 1171–1200.
  15. Trushina D. B., Bukreeva T. V., Kovalchuk M. V., Antipina M. N. // Mater. Sci. Eng: C. 2014. V. 45. P. 644–658.
  16. Trushina D. B., Borodina T. N., Belyakov S., Antipina M. N. // Materials Today Advances. 2022. V. 14. № 100214. https://doi.org/10.1016/j.mtadv.2022.100214
  17. Марковчин А. А. // Современные проблемы науки и образования. 2014. Т. 6. С. 1437–1437.
  18. Lengert E. V., Trushina D. B., Soldatov M., Ermakov A. V. // Pharmaceutics. 2022. V. 14. P. 139–146.
  19. Wang X., Zhu K. X., Zhou H. M. // Int. J. Mol. Sci. 2011. V. 12. P. 3042–3054.
  20. Wani S. U. D., Ali M., Mehdi S., Masoodi M. H., Zargar M. I., Shakeel F. // Int. J. Biol. Macromol. 2023. V. 22. № 125875. https://doi.org/10.1016/j.ijbiomac.2023.125875
  21. Arpornmaeklong P., Jaiman N., Apinyauppatham K., Fuongfuchat A., Boonyuen S. // Polymers. 2023. V. 15. P. 416–425.
  22. Sergeeva A., Vikulina A. S., Volodkin D. // Micromachines. 2019. V. 10. P. 357–362.
  23. Pogodina N. V., Pavlov G. M., Bushin S. V., Mel’nikov A.B., Lysenko Y. B., Nud’ga L.A., Tsvetkov V. N. // Polymer Science USSR. 1986. V. 28. P. 251–259.
  24. Holme H. K., Davidsen L., Kristiansen A., Smidsrod O. // Carbohydrate Polymer. 2008. V. 73. P. 656–664.
  25. Raymond L., Morin F. G., Marchessault R. H. // Carbohydrate Research. 1993. V. 246. № 1. P. 331–336.
  26. Nischwitz S.P., de Mattos I. B., Hofmann E., Groeber-Becker F., Funk M., Mohr G. J., Kamolz L. P. // Burns. 2019. V. 45. P. 1336–1341.
  27. Семина Н. А., Сидоренко С. В., Резван С. П., Грудинина С. А., Страчунский Л. С., Стецюк О. У., Сере-да З. С. // Клиническая микробиология и антимикробная химиотерапия. 2004. Т. 6. № 4. С. 306–359.
  28. Fadia P., Tyagi S., Bhagat S., Nair A., Panchal P., Dave, H., Singh S. // Biotech. 2021. V. 11. P. 1–30.
  29. Rieger J. // Faraday Discuss. 2007. V. 136. P. 265–272.
  30. Yan F. W., Zhang S. F., Guo C. Y., Zhang X. H., Chen G. C., Yan F., Yuan G. Q. // Crystal Research and Tech-nology: Journal of Experimental and Industrial Crystallography. 20090. V. 44. P. 725–728.
  31. Linnikov O.D. // Russian Chemical Reviews. 2014. V. 83. P. 343–349.
  32. Lu H., Jiang X., Wang J., Hu R. // Frontiers in Materials. 2022. V. 9. № 1093164.
  33. Cai J., Chen X. // RSC advances. 2018. V. 8. № 69. P. 39463–39469.
  34. Studzinska-Sroka E., Galanty A., Bylka W. // Mini Reviews in Medicinal Chemistry. 2017. V. 17. P. 1633–1645.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The effect of mixing speed of CaCl2 and Na2CO3 salts on the shape and size of CaCO3 particles: a — 400, b — 600, c — 800, d — 1000 rpm.

Download (373KB)
3. Fig. 2. Kinetics of distilled water absorption by a composite aerogel based on PEC ALG-HTZ with the inclusion of CaCO3 microparticles synthesized at a mixing speed of CaCl2 and Na2CO3 salts of 400 rpm.

Download (66KB)
4. Fig. 3. Release of AT from a composite aerogel based on PEC ALG-HTZ with the inclusion of CaCO3 microparticles synthesized at a mixing speed of CaCl2 and Na2CO3 salts of 400 rpm.

Download (63KB)

Copyright (c) 2024 Russian Academy of Sciences