Effect of chitosan conjugates with oxycinnamic acids and Bacillus subtilis bacteria on the activity of protective proteins and resistance of potato plants to Phytophthora infestans

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The effect of chitosan conjugates with caffeic (ChCA) and ferulic (ChFA) acids in combination with Bacillus subtilis bacteria on the transcriptional activity of PR protein genes and proteome changes in potato plants during infection with Phytophthora infestans (Mont.) de Bary was studied. Plants grown from mini tubers of the Luck variety were sprayed with solutions of ChCA and ChFA, suspension of B. subtilis bacteria strains 26D and 11 VM, composites of ChCA of ChFA together with bacteria. 3 days after treatment, some of the plants were infected with P. infestans. A decrease in the degree of development of the pathogen of late blight on potato leaves in all treatment options was revealed. The maximum protective effect was manifested when plants were treated with bacteria B. subtilis strain 26D in combination with conjugates of chitosan and oxycinnamic acids. The mechanisms of increasing the resistance of potato plants to P. infestans were associated with the activation of transcriptional activity of genes encoding the main protective protein (PR‑1), chitinase (PR‑3), thaumatin-like protein (PR‑5), protease inhibitor (PR‑6), peroxidase (PR‑9), ribonuclease (PR‑10). The revealed activation of the expression of marker genes of systemic acquired resistance and induced systemic resistance under the influence of joint treatment of plants with B. subtilis and chitin conjugates with oxycinnamic acids indicate the synergistic development of protective reactions in potato plants in this variant. By the method of two-dimensional electrophoresis of S. tuberosum leaf proteins followed by MALDI-TOF analysis, 12 proteins were identified, the presence of which in the leaves differed depending on the variant of the experiment. In all treatment variants, suppression of serine-threonine protein phosphatase activity was observed, reflecting the development of the hypersensitivity reaction. Different variants of the experiment formed weakly expressed clusters, which indicates multiple mechanisms of regulation of the synthesis of protective proteins involved in the reaction to treatment with bacteria, chitosan conjugates and infection with P. infestans.

Full Text

Restricted Access

About the authors

L. G. Yarullina

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science; Ufa University of Science and Technology

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa; 450076, Ufa

G. F. Burkhanova

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

V. O. Tsvetkov

Ufa University of Science and Technology

Email: yarullina@bk.ru
Russian Federation, 450076, Ufa

E. A. Cherepanova

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

A. V. Sorokan

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

Е. A.  Zaikina

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

I. S. Mardanshin

Bashkir Research Institute of Agriculture — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Sciences

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

I. Y. Fatkullin

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

I. V. Maksimov

Institute of Biochemistry and Genetics — a separate structural unit of the Ufa Federal Research Center of the Russian Academy of Science

Email: yarullina@bk.ru
Russian Federation, 450054, Ufa

J. N. Kalatskaja

Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus

Email: yarullina@bk.ru
Belarus, 220072, Minsk

N. A. Yalouskaya

Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus

Email: yarullina@bk.ru
Belarus, 220072, Minsk

E. I. Rybinskaya

Institute of Experimental Botany, V. F. Kuprevich National Academy of Sciences of Belarus

Author for correspondence.
Email: yarullina@bk.ru
Belarus, 220072, Minsk

References

  1. Chandler D., Bailey A. S., Tatchell G. M., Davidson G., Greaves J., Grant W. P. // Philos. Trans. R Soc. Lond. B Biol. Sci. 2011. V. 366. P. 1987–1998. https://doi.org/10.1098/rstb.2010.0390
  2. Kocięcka J., Liberacki D. // Plants. 2021. V. 10. P. 1160. https://doi.org/10.3390/plants10061160
  3. Gonçalves C., Ferreira N., Lourenço L. // Polymers. 2021. V. 13. P. 2466. https://doi.org/10.3390/polym13152466
  4. Aranaz I., Alcántara A. R., Civera M. C., Arias C., Elorza B., Heras Caballero A., Acosta N. // Polymers. 2021. V. 13. P. 3256. https://doi.org/10.3390/polym13193256
  5. Новикова И. И., Попова Э. В., Краснобаева И. Л., Коваленко Н. М. // Сельскохозяйственная биология. 2021. Т. 56. № 3. С. 511–522. https://doi.org/10.15389/agrobiology.2021.3.511rus
  6. Kolesnikov L. E., Popova E. V., Novikova I. I., Priyatkin N. S., Arkhipov M. V., Kolesnikova Yu.R. et al. // Agricultural Biology. 2019. V. 54. № 5. P. 1024–1040. https://doi.org/10.15389/agrobiology.2019.5.1024
  7. Краснобаева И. Л., Коваленко Н. М., Попова Э. В. // Вестник защиты растений. 2020. T. 103. № 4. C. 233–240. https://doi.org/10.31993/2308-6459-2020-103-4-13272
  8. Ortiz-Rodríguez T., De La Fuente-Salcido N., Bideshi D. K., Salcedo-Hernández R., Barboza-Corona J. E. // Lett. Appl. Micro-biol. 2010. V. 51. P. 184–190.
  9. Saharan V., Pal A. Chitosan Based Nanomaterials in Plant Growth and Protection. New Delhi, India: Springer, 2016. P. 33–41.
  10. Palazzini J., Reynoso A., Yerkovich N., Zachetti V., Ramírez M., Chulze S. // Toxins. 2022. V. 14. P. 499. https://doi.org/10.3390/toxins14070499
  11. Ahmed A. S., Ezziyyani M., Sánchez C. P., Candela M. E. // Eur. J. Plant Pathol. 2003. V. 109. P. 633–637. https://doi.org/10.1023/A:1024734216814
  12. Brzezinska M.S., Kalwasińska A., Świątczak J., Żero K., Jankiewicz U. // Microb. Pathog. 2020. V. 148. P. 104462. https://doi.org/10.1016/j.micpath.2020.104462
  13. Rajput V. D., Harish Singh R. K., Verma K. K., Sharma L., Quiroz-Figueroa F.R., Meena M., Gour V. S., Minkina T., Sushkova S., Mandzhieva S. // Biology. 2021. V. 10. P. 267. https://doi.org/10.3390/biology10040267
  14. Kruger N. J. In: The Protein Protocols Handbook. Springer Protocols Handbooks / Ed. J. M. Walker, Totowa, USA: Humana Press, 2009. P. 17–24.
  15. Yarullina L.G., Burkhanova G. F., Cherepanova E. A., Sorokan A. V., Zaikina E. A., Tsvetkov V. O. et al. // Appl. Biochem. Microbiol. 2021. V. 57. № 6. P. 760–769. https://doi.org/10.31857/S0555109921060131
  16. Fedina E.O., Karimova F. G., Tarchevsky I. A., Toropygin I. Y., Khripach V. A. // Russ. J. Plant Phys. 2008. V. 55. P. 193–200. https://doi.org/10.1007/s11183–008–2005–0
  17. Conrath U., Beckers G. J. M., Flors V., García-Agustín P., Jakab G., Mauch F. et al. // Mol. Plant Microbe Interact. 2006. V. 19. P. 1062–1071.
  18. Максимов И.В., Сингх Б. П., Черепанова Е. А., Бурханова Г. Ф., Хайруллин Р. М. // Прикладная биохимия и микробиология. 2020. Т. 56. № 1. С. 19–34. https://doi.org/10.31857/S0555109920010134
  19. Gonzalez-Gallegos E., Laredo-Alcala E., Ascacio-Valdes J., de Rodriguez D., Hernandez-Castillo F. // American Journal of Plant Sciences. 2015. V. 6. № 11. P. 1785–1791. https://doi.org/10.4236/ajps.2015.611179
  20. Yu Y., Gui Y., Li Z., Jiang C., Guo J., Niu D. // Plants (Basel). 2022. V. 11. № 3. P. 386. https://doi.org/10.3390/plants11030386
  21. Тарчевский И. А., Егорова А. М. // Прикладная биохимия и микробиология. 2022. Т. 58. № 4. C. 315–329.
  22. Riseh R. S., Hassanisaadi M., Vatankhah M., Babaki S. A., Barka E. A. // Int. J. Biol. Macromol. 2022. V. 220. P. 998–1009.
  23. Suarez-Fernandeza M., Marhuenda-Egeac F. C., Lopez-Moyab F., Arnaod M. B., Cabrera-Escribanoe F., Nuedaf M. J. et al. // Front. Plant Sci. 2020. V. 11. P. 572087. https://doi.org/10.3389/fpls.2020.572087
  24. Chakraborty M., Hasamezzaman M., Rahman M., Khan M. A.R., Bhowmik P., Mahmud N. U. et al. // Agriculture. 2020. V. 10. № 12. P. 624. https://doi.org/10.3390/agriculture10120624
  25. Fabro G., Kovács I., Pavet V., Szabodos L., Alvarez M. E. // Mol. Plant Microb. Intrract. 2004. V. 17. № 4. P. 343–350.
  26. Bordiec S., Paquis S., Lacroix H., Dhondt S., Barka E., Kauff­mann A. et al. // J. Exp. Botany. 2011. V. 62. P. 595–603. https://doi.org/10.1093/jxb/erq291
  27. Pfannschmidt T., Brautigam K., Wagner R., Dietzel L., Schroter Y., Steiner S., Nykytenko A. // Ann. Bot. 2009. V. 103. P. 599–607. https://doi.org/10.1093/aob/mcn081
  28. Gagné-Bourque F., Mayer B. F. // PLoS ONE. 2015. V. 10. № 6. Р. e0130456. https://doi.org/10.1371/journal.pone.0130456
  29. Veselova S. V., Nuzhnaya T. V., Maksimov I. V. In: Jasmonic Acid: Biosynthesis, Functions and Role in Plant Development, Series Plant Science Research and Practices / Ed. L. Morrison. USA: Nova Sci. Publishers, 2015. P. 33–66.
  30. Glazebrook J. // Annu. Rev. Phytopathol. 2005. V. 43. P. 205. https://doi.org/10.1146/annurev.phyto.43.040204.135923
  31. Gimenez-Ibanez S., Solano R. // Front. Plant Sci. 2013. V. 4. P. 72. https://doi.org/10.3389/fpls.2013.00072
  32. Chen F., Wang M., Zhang Y., Luo J., Yang X., Wang X. // World J. Microbiol. Biotechnol. 2010. V. 26. P. 675–684.
  33. Vasyukova N. I., Ozeretskovskaya O. L. // Russian Journal of Plant Physiology. 2009. V. 56. № 5. P. 581–590. https://doi.org/10.1134/S102144370905001X
  34. He M., Xu Y., Cao J. // Protoplasma. 2013. V. 250. № 1. P. 1229–1240.
  35. Choi D. S., Hwang I. S., Hwang B. K. // Plant Cell. 2012. V. 24. № 4. P. 1675–1690.
  36. Martinez-Medina A., Flors V., Heil M., Mauch-Mani B., Corné M. J., Pieterse C. M. J. // Trends Plant Sci. 2016. V. 21. P. 818–822. https://doi.org/10.1016/j.tplants.2016.07.009
  37. Krompholz N., Krischkowski C., Reichmann D., Garbe-Schönberg D., Mendel R., Bittner F. et al. // Chem. Res. Toxicol. 2012. V. 25. № 11. P. 2443. https://doi.org/10.1021/tx300298m
  38. Rixen S., Havemeyer A., Tyl-Bielicka A., Pysniak K., Gajewska M., Kulecka M. et al. // J. Biol. Chem. 2019. V. 294. RA119.007606. https://doi.org/10.1074/jbc.RA119.007606
  39. Plitzko B., Havemeyer A., Kunze T., Clement B. // Cell Biology. 2015. V. 290. № 16. P. 10126. https://doi.org/10.1074/jbc.M115.640052
  40. Máthé C., Garda T., Freytag C., M-Hamvas M. // Int. J. Mol. Sci. 2019. V. 20. P. 3028. https://doi.org/10.3390/ijms20123028
  41. Moreno J. I., Martın R., Castresana C. // The Plant Journal. 2005. V. 41. P. 451. https://doi.org/10.1111/j.1365–313X.2004.02311.x

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Effect of conjugates of CKK and CFC in compositions with B. subtilis 26D and B. subtilis 11BM on the infestation of potato leaves by P. infestans on the 10th day after inoculation. Values ​​significantly different from the control values ​​according to the Kruskal–Wallis criterion are marked with an asterisk.

Download (75KB)
3. Fig. 2. Effect of conjugates of CKK and CPF in compositions with B. subtilis 26D and B. subtilis 11BM on the proline content (a) and transcriptional activity of the pyrroline 5-carboxylate synthase gene (b) in potato plants on the 3rd day after inoculation with P.infestans: 1 — control, 2 — infection with P. infestans. Values ​​significantly different from the control values ​​according to the Kruskal–Wallis criterion are marked with an asterisk.

Download (151KB)
4. Fig. 3. Effect of conjugates of CKK and CFC in compositions with B. subtilis 26D and B. subtilis 11BM on the transcriptional activity of PR protein genes in potato plants 72 hours after infection with P.infestans: 1 — control, 2 — infection with P. infestans.

Download (929KB)
5. Fig. 4. Clustering of experimental variants according to the presence of different proteins in leaves. “Pi” – infection with P. infestans.

Download (742KB)

Copyright (c) 2024 Russian Academy of Sciences