Antibiofilm and Probiofilm Effects of Nanomaterials on Microorganisms
- Авторлар: Maksimova Y.G.1,2, Zorina A.S.1
-
Мекемелер:
- Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences
- Perm State University
- Шығарылым: Том 60, № 1 (2024)
- Беттер: 3-19
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674570
- DOI: https://doi.org/10.31857/S0555109924010015
- EDN: https://elibrary.ru/HDFNBN
- ID: 674570
Дәйексөз келтіру
Аннотация
The review summarizes and analyzes information regarding the effect of nanoparticles (NPs) of metals, metal oxides and carbon on the biofilm formation and mature biofilms of microorganisms. The viability of individual microbial cells, including direct disruption of cell surface structures and oxidative stress associated with the formation of reactive oxygen species (ROS), as well as the effect on the production of the exopolymer matrix and the quorum sensing system are considered as the mechanisms of NPs action on biofilms. The effects of silver NPs, gold NPs, some metal oxides, and carbon nanomaterials on microbial biofilms have been described in more detail. The effects of metal and carbon NPs on microbial biofilms are compared. Both antibiofilm and probiofilm effects of NPs are noted, depending on their nature, and the prospect of their use as antimicrobial agents and carriers for the production of microbial biofilms of biotechnological significance are considered.
Толық мәтін

Авторлар туралы
Yu. Maksimova
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences; Perm State University
Хат алмасуға жауапты Автор.
Email: yul_max@mail.ru
Ресей, Perm, 614081; Perm, 614990
A. Zorina
Institute of Ecology and Genetics of Microorganisms, Ural Branch of the Russian Academy of Sciences
Email: yul_max@mail.ru
Ресей, Perm, 614081
Әдебиет тізімі
- Singh J., Dutta T., Kim K.-H., Rawat M., Samddar P., Kumar P. // J. Nanobiotechnol. 2018. V. 16. P. 84. https://doi.org/10.1186/s12951-018-0408-4
- Whitesides G. // Small. 2005. V. 1. № 2. P. 172–179. https://doi.org/10.1002/smll.200400130
- Johnston H. J., Hutchison G. R., Christensen F. M., Peters S., Hankin S., Aschberger K., Stone V. // Nanotoxicology. 2010. V. 4. № 2. P. 207–246. https://doi.org/10.3109/17435390903569639
- Shvedova A. A., Pietroiusti A., Fadeel B., Kagan V. E. // Toxicol. Appl. Pharmacol. 2012. V. 261. № 2. P. 121–133. https://doi.org/10.1016/j.taap.2012.03.023
- Devi L. S., Joshi S. R. // Mycobiology. 2012. V. 40. № 1. P. 27–34. https://doi.org/10.5941/MYCO.2012.40.1.027
- Burygin G. L. // Nanoscale Res. Let. 2009. V. 4. P. 794–801. https://doi.org/10.1007/s11671-009-9316-8
- Grace N. A., Pandian K. // Colloids Surf. A Physicochem. Eng. Asp. 2007. V. 297. № 1–3. P. 63–70. https://doi.org/10.1016/j.colsurfa.2006.10.024
- Saha B., Bhattacharya J., Mukherjee A., Ghosh A., Santra C., Dasgupta A. K., Karmakar P. // Nanoscale Res. Lett. 2007. V. 2. № 12. P. 614–622. https://doi.org/10.1007/s11671-007-9104-2
- Rai A., Prabhune A., Perry C. C. // J. Mater. Chem. 2010. V. 20. № 32. P. 6789–6798. https://doi.org/10.1039/C0JM00817F
- Shahverdi A. R., Fakhimi A., Shahverdi H. R., Minaian S. // Nanomed.: Nanotechnol. Biol. Med. 2007. V. 3. № 2. P. 168–171. https://doi.org/10.1016/j.nano.2007.02.001
- Zheng K., Setyawati M. I., Lim, T.P., Leong D. T., Xie J. // ACS Nano. 2016. V. 10. № 8. P. 7934–7942. https://doi.org/10.1021/acsnano.6b03862
- Chopra I. // J. Antimicrob. Chemother. 2007. V. 59. № 4. P. 587–590. https://doi.org/10.1093/jac/dkm006
- Wang S. G., Chen Y. C., Chen Y. C. // Nanomedicine (Lond). 2018. V. 13. № 12. P. 1405–1416. https://doi.org/10.2217/nnm-2017-0380
- Fuller M., Whiley H., Köper I. //SN Appl. Sci. 2020. V. 2. 1022. https://doi.org/10.1007/s42452-020-2835-8
- Wang J., Zhang J., Liu K., He J., Zhang Y., Chen S., Ma G., Cui Y., Wang L., Gao D. // Int. J. Pharm. 2020. V. 580. 119231. https://doi.org/10.1016/j.ijpharm.2020.119231
- Fan Y., Pauer A. C., Gonzales A. A., Fenniri H. // Int. J. Nanomed. 2019. V. 14. P. 7281–7289. https://doi.org/10.2147/IJN.S209756
- Chavan C., Kamble S., Murthy A. V.R., Kale S. N. // Nanotechnology. 2020. V. 31. № 21. 215604. https://doi.org/10.1088/1361–6528/ab72b4
- Rocca D. M., Silvero M. J., Aiassa V., Becerra M. C. // Photodiagnosis. Photod. Ther. 2020. V. 31. 101811. https://doi.org/10.1016/j.pdpdt.2020.101811
- Flemming H.-C., Wingender J. // Nature Reviews Microbiology. 2010. V. 8. P. 623–633. https://doi.org/10.1038/nrmicro2415
- Abdallah M., Benoliel C., Drider D., Dhulster P., Chihib N. E. // Arch. Microbiol. 2014. V. 196. № 7. P. 453–472. https://doi.org/10.1007/s00203-014-0983-1
- Wingender J., Flemming H. C. // Int. J. Hyg. Environ. Health. 2011. V. 214. № 6. P. 417–423. https://doi.org/10.1016/j.ijheh.2011.05.009
- Al-Wrafy F.A., Al-Gheethi A.A., Ponnusamy S. K., Noman E. A., Fattah S. A. Chemosphere. 2022. 288. 132603. https://doi.org/10.1016/j.chemosphere.2021.132603
- Ozdal M., Gurkok S. // ADMET & DMPK. 2022. V. 10. № 2. P. 115–129. https://doi.org/10.5599/admet.1172
- Teixeira-Santos R., Gomes M., Gomes L. C., Mergulhão F. J. // iScience. 2020. V. 24. № 1. 102001. https://doi.org/10.1016/j.isci.2020.102001
- Kumari A., Rajeev R., Benny L., Sudhakar Y. N., Varghese A., Hegde G. // Adv. Colloid Interface Sci. 2021. V. 297. 102542. https://doi.org/10.1016/j.cis.2021.102542
- Zhao Q., Wang S., Lv Z., Zupanic A., Guo S., Zhao Q., Jiang L., Yu Y. // Biotechnol. Adv. 2022. V. 59. 107982. https://doi.org/10.1016/j.biotechadv.2022.107982
- Maksimova Yu.G., Nikulin S. M., Osovetskii B. M., Demakov V. A. // Appl. Biochem. Microbiol. 2017. V. 53. № 5. P. 506–512. https://doi.org/10.1134/S0003683817050118
- Pondman K., Le Gac S., Kishore U. // Immunobiology. 2022. V. 228. № 2. 152317. https://doi.org/10.1016/j.imbio.2022.152317
- Musee N., Thwala M., Nota N. // J. Environ. Monit. 2011. V. 13. № 5. P. 1164–1183. https://doi.org/10.1039/C1EM10023H
- Kulshrestha S., Qayyum S., Khan A. U. // Microb. Pathog. 2017. V. 103. P. 167–177. https://doi.org/10.1016/j.micpath.2016.12.022
- Yu Q., Li J., Zhang Y., Wang Y., Liu L., Li M. // Sci. Rep. 2016. V. 6. P. 26667. https://doi.org/10.1038/srep26667
- Thill A., Zeyons O., Spalla O., Chauvat F., Rose J., Ayffan M., Flank A. M. // Environ. Sci. Technol. 2006. V. 40. № 19. P. 6151–6156. https://doi.org/10.1021/es060999b
- Jones N., Ray B., Ranjit K. T., Manna A. C. // FEMS Microbiol. Lett. 2008. V. 279. № 1. P. 71–76. https://doi.org/10.1111/j.1574-6968.2007.01012.x
- Kang S., Pinault M., Pfefferle L. D., Elimelech M. // Langmuir. 2007. V. 23. № 17. P. 8670–8673. https://doi.org/10.1021/la701067r
- Kang S., Herzberg M., Rodrigues D. F., Elimelech M. // Langmuir. 2008. V. 24. № 13. P. 6409–6413. https://doi.org/10.1021/la800951v
- Tao Y., Zhou F., Wang K., Yang D., Sacher E. // Molecules. 2022. V. 27. № 20. 6951. https://doi.org/10.3390/molecules27206951
- Maness P-C., Smolinski S., Blake D. M., Huang Z., Wolfrum E. J., Jacoby W. A. // Appl. Environ. Microbiol. 1999. V. 65. № 9. P. 4094–4098. https://doi.org/10.1128/aem.65.9.4094-4098.1999
- Chawengkijwanich C., Hayata Y. // Int. J. Food Microbiol. 2008. V. 123. № 3. P. 288–292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
- Kim B., Kim D., Cho D., Cho S. // Chemosphere. 2003. V. 52. № 1. P. 277–281. https://doi.org/10.1016/S0045-6535(03)00051-1
- Chorianopoulos N. G., Tsoukleris D. S., Panagou E. Z., Falaras P., Nychas G-J.E. // Food Microbiol. 2011. V. 28. № 1. P. 164–170. https://doi.org/10.1016/j.fm.2010.07.025
- Pramanik A., Laha D., Bhattacharya D., Pramanik P., Karmakar P. // Colloids Surf. 2012. V. 96. P. 50–55. https://doi.org/10.1016/j.colsurfb.2012.03.021
- Chamundeeswari M., Sobhana S. S.L., Jacob J. P., Kumar M. G., Devi M. P., Sastry T. P., Mandal A. B. // Biotechnol. Appl. Biochem. 2010. V. 55. № 1. P. 29–35. https://doi.org/10.1042/ba20090198
- Koper O., Klabunde J., Marchin G., Klabunde K. J., Stoimenov P., Bohra L. // Curr. Microbiol. 2002. V. 44. № 1. P. 49–55. https://doi.org/10.1007/s00284-001-0073-x
- Hetrick E. M., Shin J. H., Paul H. S., Schoenfisch M. H. // Biomaterials. 2009. V. 30. № 14. P. 2782-2789. https://doi.org/10.1016/j.biomaterials.2009.01.052
- Wadhwani P., Heidenreich N., Podeyn B., Bürck J., Ulrich A. S. // Biomater. Sci. 2017. V. 5. № 4. P. 817–827. https://doi.org/10.1039/C7BM00069C
- Lee B., Park J., Ryu M., Kim S., Joo M., Yeom J. H., Kim S., Park Y., Lee K., Bae J. // Sci. Rep. 2017. V. 7. 13572. https://doi.org/10.1038/s41598-017-14127-z
- Wang S., Yan C., Zhang X., Shi D., Chi L., Luo G., Deng J. // Biomater. Sci. 2018. V. 6. № 10. P. 2757–2772. https://doi.org/10.1039/c8bm00807h
- Palmieri G., Tatè R., Gogliettino M., Balestrieri M., Rea I., Terracciano M., Proroga Y. T., Capuano F., Anastasio A., De Stefano L. // Bioconjug. Chem. 2018. V. 29. № 11. P. 3877–3885. https://doi.org/10.1021/acs.bioconjchem.8b00706
- Li W., Geng X., Liu D., Li Z. // Int. J. Nanomed. 2019. V. 14. P. 8047–8058. https://doi.org/10.2147/IJN.S212750
- Vinoj G., Pati R., Sonawane A., Vaseeharan B. // Antimicrob. Agents Chemother. 2014. V. 59. № 2. P. 763–771. https://doi.org/10.1128/aac.03047-14
- Peng H., Borg R. E., Dow L. P., Pruitt B. L., Chen I. A. // Proc. Natl. Acad. Sci. USA. 2020. V. 117. № 4. P. 1951–1961. https://doi.org/10.1073/pnas.1913234117
- Chifiriuc C., Grumezescu V., Grumezescu A., Saviuc C., Lazăr V., Andronescu E. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 209. https://doi.org/10.1186/1556-276x-7-209
- Morones J. R., Elechiguerra J. L., Camacho A., Holt K., Kouri J. B., Yacaman M. J. // Nanotechnology. 2005. V. 16. № 10. P. 2346–2353. https://doi.org/10.1088/0957-4484/16/10/059
- Pal S., Tak Y. K., Song J. M. // Appl. Environ. Microbiol. 2007. V. 73. № 6. P. 1712–1720. https://doi.org/10.1128/AEM.02218-06
- Cho K. H., Park J. E., Osaka T., Park S. G. // Electrochim. Acta. 2005. V. 51. № 5. P. 956–960. https://doi.org/10.1016/j.electacta.2005.04.071
- Baker C., Pradhan A., Pakstis L., Pochan D. J., Shah S. I. // J. Nanosci. Nanotechnol. 2005. V. 5. № 2. P. 244–249. https://doi.org/10.1166/jnn.2005.034
- Martínez-Castañón G.A., Niño-Martínez N., Martínez-Gutierrez F., Martínez-Mendoza J.R., Ruiz F. // J. Nanoparticle Res. 2008. V. 10. № 8. P. 1343–1348. https://doi.org/10.1007/s11051-008-9428-6
- Huang L. // J Inorg Biochem. 2005. V. 99. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
- Lellouche J., Friedman A., Lellouche J.-P., Gedanken A., Banin E. // Nanomed.: Nanotechnol. Biol. Med. 2012. V. 8. № 5. P. 702–711. doi.org/10.1016/j.nano.2011.09.002
- Ortiz-Benítez E.A., Velázquez-Guadarrama N., Durán Figueroa N. V., Quezada H., De Jesús Olivares-Trejo J. // Metallomics. 2019. V. 11. № 7. P. 1265–1276. https://doi.org/10.1039/c9mt00084d
- Zheng K., Setyawati M. I., Leong D. T., Xie J. // ACS Nano. 2017. V. 11. № 7. P. 6904–6910. https://doi.org/10.1021/acsnano.7b02035
- Xing X., Ma W., Zhao X., Wang J., Yao L., Jiang X., Wu Z. // Langmuir. 2018. V. 34. № 42. P. 12583–12589. https://doi.org/10.1021/acs.langmuir.8b01700
- Zhou Y., Kong Y., Kundu S., Cirillo J. D., Liang H. // J. Nanobiotechnol. 2012. V. 10. P. 19. https://doi.org/10.1186/1477-3155-10-19
- Mubarak Ali D., Thajuddin N., Jeganathan K., Gunasekaran M. // Colloids Surf. B Biointerfaces. 2011. V. 85. № 2. P. 360–365. https://doi.org/10.1016/j.colsurfb.2011.03.009
- Badwaik V. D., Vangala L. M., Pender D. S., Willis C. B., Aguilar Z. P., Gonzalez M. S., Paripelly R., Dakshinamurthy R. // Nanoscale Res. Lett. 2012. V. 7. № 1. P. 623. https://doi.org/10.1186/1556-276X-7-623
- Bankier C., Matharu R. K., Cheong Y. K., Ren G. G., Cloutman-Green E., Ciric L. // Sci. Rep. 2019. V. 9. P. 16074. https://doi.org/10.1038/s41598-019-52473-2
- Shaikh S., Nazam N., Rizvi S. M.D., Ahmad K., Baig M. H., Lee E. J., Choi I. // Int. J. Mol. Sci. 2019. V. 20. № 10. P. 2468. https://doi.org/10.3390/ijms20102468
- Linklater D. P., Baulin V. A., Le Guével X., Fleury J., Hanssen E., Nguyen T. H.P., Juodkazis S., Bryant G., Crawford R. J., Stoodley P., Ivanova E. P. // Adv. Mater. 2020. V. 32. № 52. P. 2005679. https://doi.org/10.1002/adma.202005679
- Campoccia D., Montanaro L., Arciola C. R. // Biomaterials. 2013. V. 34. № 34. P. 8533–8554. https://doi.org/10.1016/j.biomaterials.2013.07.089
- Дерябин Д. Г., Васильченко А. С., Алешина Е. С., Тлягулова А. С., Никиян А. Н. // Российские нанотехнологии. 2010. Т. 5. № 11–12. С. 103–108.
- Maksimova Y., Zorina A., Nesterova L. // Microorganisms. 2023. V. 11. P. 1221. https://doi.org/10.3390/microorganisms11051221
- Applerot G., Lrllouche J., Perkas N., Nitzan Y., Gedanken A., Banin E. // RSC Adv. 2012. V. 2. № 6. P. 2314–2321. https://doi.org/10.1039/C2RA00602B
- Martín S. M., Barros R., Domi B., Rumbo C., Poddighe M., Aparicio S., Suarez-Diez M., Tamayo-Ramos J.A. // Nanomaterials. 2021. V. 11. № 9. P. 2272. https://doi.org/10.3390/nano11092272
- Vecitis C. D., Zodrow K. R., Kang S., Elimelech M. // ACS Nano. 2010. V. 4. № 9. P. 5471–5479. https://doi.org/10.1021/nn101558x
- Jackson P., Jacobsen N. R., Baun A., Birkedal R., Kühnel D., Jensen K. A., Vogel U., Wallin H. // Chem. Cent. J. 2013. V. 7. P. 154. https://doi.org/10.1186/1752-153X-7-154
- Kang S., Mauter M. S., Elimelech M. // Environ. Sci. Technol. 2008. V. 42. № 19. P. 7528–7534. https://doi.org/10.1021/es8010173
- Chen C.-Y., Jafvert C. T. // Carbon. 2011. V. 49. № 15. P. 5099–5106. https://doi.org/10.1016/j.carbon.2011.07.029
- Mohammad G., Mishra V. K., Pandey H. P. // Digest J Nanomater Biostruct. 2008. V. 3. № 4. P. 159–162.
- Fenoglio I., Tomatis M., Lison D., Muller J., Fonseca A., Nagy J. B., Fubini B. // Free Radic. Biol. Med. 2006. V. 40. № 7. P. 1227–1233. https://doi.org/10.1016/j.freeradbiomed.2005.11.010
- Hall-Stoodley L., Costerton J. W., Stoodley P. // Nat. Rev. Microbiol. 2004. V. 2. № 2. P. 95–108. https://doi.org/10.1038/nrmicro821
- Bjarnsholt T. // APMIS. 2013. V. 121. № 136. P. 1–58. https://doi.org/10.1111/apm.12099
- Flemming H.-C., Neu T. R., Wozniak D. J. // J. Bacteriol. 2007. V. 189. № 22. P. 7945–7947. https://doi.org/10.1128/JB.00858-07
- Rodrigues D. F., Elimelech M. // Environ. Sci. Technol. 2010. V. 44. № 12. P. 4583–4589. https://doi.org/10.1021/es1005785
- Lundqvist M., Stigler J., Elia G., Lynch I., Cedervall T., Dawson K. A. // Proc. Natl. Acad. Sci. USA. 2008. V. 105. № 38. P. 14265–14270. https://doi.org/10.1073/pnas.0805135105
- Takenaka S., Pitts B., Trivedi H. M., Stewart P. S. // Appl. Environ. Microbiol. 2009. V. 75. № 6. 1750. https://doi.org/10.1128/AEM.02279-08
- Stewart P. S. // J. Bacteriol. Res. 2003. V. 185. № 5. P. 1485. https://doi.org/10.1128/JB.185.5.1485-1491.2003
- Peulen T. O., Wilkinson K. J. // Environ. Sci. Technol. 2011. V. 45. № 8. P. 3367. https://doi.org/10.1021/es103450g
- Guiot E., Georges P., Brun A., Fontaine-Aupart M., Bellon-Fontaine M.-N., Briandet R. // Photochem. Photobiol. 2002. V. 75. № 6. P. 570–578. https://doi.org/10.1562/0031-8655(2002)075<0570: hodimb>2.0.co;2
- Sanabria H., Kubota Y., Waxham M. N. // Biophys. J. 2007. V. 92. № 1. P. 313–322. https://doi.org/10.1529/biophysj.106.090498
- Habimana O., Steenkeste K., Fontaine-Aupart M. P., Bellon-Fontaine M.N., Kulakauskas S., Briandet R. // Appl. Environ. Microbiol. 2011. V. 77. № 1. P. 367–368. https://doi.org/10.1128/AEM.02163-10
- Neihaya H. Z., Zaman H. H. // Microb. Pathog. 2018. V. 116. P. 200–208. https://doi.org/10.1016/j.micpath.2018.01.024
- Neu T. R., Manz B., Volke F., Dynes J. J., Hitchcock A. P., Lawrence J. R. // FEMS Microbiol. Ecol. 2010. V. 72. № 1. P. 1–21. https://doi.org/10.1111/j.1574-6941.2010.00837.x
- Schmitt J., Flemming H.-C. // Water Sci. Technol. 1999. V. 39. № 7. P. 77–82. https://doi.org/10.1016/S0273-1223(99)00153-5
- Ramalingam V., Rajaram R., PremKumar C., Santhanam P., Vinothkumar S., Kaleshkumar Dhi K. // J. Basic Microbiol. 2013. V. 53. V. 54. № 9. P. 928–936. https://doi.org/10.1002/jobm.201300514
- Stan M. S., Cinteza O. L., Petrescu L., Mernea M. A., Calborean O., Mihailescu D. F., Sima C., Dinischiotu A. // Sci. Rep. 2018. V. 8. № 1. P. 5289. https://d oi.org/10.1038/s41598-018-23621-x
- Vandana, Das S. // Carbohydr Polym. 2022. V. 291. P. 119536. https://doi.org/10.1016/j.carbpol.2022.119536.
- Fazeli-Nasab B., Sayyed R. Z., Mojahed L. S., Rahmani A. F., Ghafari M., Antoniusf S., Sukamto. // Biocatal. Agric. Biotechnol. 2022. V. 42. P. 102337. https://doi.org/10.1016/j.bcab.2022.102337
- Ghosh S., Saha I., Dey A., Lahiri D., Nag M., Sarkar T., Pati S., Rebezov M., Shariati M. A., Thiruvengadam M., Ray R. R. // S. Afr. J. Bot. 2021. V. 151. P. 92–106. https://doi.org/10.1016/j.sajb.2021.11.039.
- Fernández-Gómez P., López M., Prieto M., González-Raurich M., Alvarez-Ordóñez A. // Food Res. Int. 2020. V. 136. P. 109508. https://doi.org/10.1016/j.foodres.2020.109508.
- Chen M., Cai Y., Li G., Zhao H., An T. // Appl. Catal. B. 2022. V. 307. P. 121200. https://doi.org/10.1016/j.apcatb.2022.121200.
- Ali S. G., Ansari M. A., Alzohairy M. A., Alomary M. N., AlYahya S., Jalal M., Khan H. M., Asiri S. M. M., Ahmad W., Mahdi A. A., El-Sherbeeny A. M., El-Meligy M. // Antibiotics. 2020. V. 9. № 3. P. 100. https://doi.org/10.3390/antibiotics9030100
- Habimana O., Zanoni M., Vitale S., O’Neill T., Scholz D., Xu B., Casey E. // J. Colloid Interface Sci. 2018. V. 526. P. 419–428. https://doi.org/10.1016/j.jcis.2018.05.014
- Zanoni M., Habimana O., Amadio J., Casey E. // Biotechnol. Bioeng. 2016. V. 113. № 3. P. 501–512. https://doi.org/10.1002/bit.25835
- Rutherford S. T., Bassler B. L. // Cold Spring Harb. Perspect. Med. 2012. V. 2. № 11. a012427. https://doi.org/10.1101/cshperspect.a012427
- Papenfort K., Bassler B. L. // Nat. Rev. Microbiol. 2016. V. 14. № 9. P. 576–588. https://doi.org/10.1038/nrmicro.2016.89
- Kim H.-S., Lee S.-H., Byun Y., Park H.-D. // Sci. Rep. 2015. V. 5. № 1. P. 8656. https://doi.org/10.1038/srep08656
- Jayaraman A., Wood T. H. // Annu. Rev. Biomed Eng. 2008. V. 10. P. 145–167. https://doi.org/10.1146/annurev.bioeng.10.061807.160536
- Fuqua C., Greenberg E. P. // Nat. Rev. Mol. Cell. Biol. 2002. V. 3. P. 685–695. https://doi.org/10.1038/nrm907
- Nadell C. D., Xavier J. B., Levin S. A., Foster K. R. // Plos Biol. 2008. V. 6. № 14. P. 171–179. https://doi.org/10.1371/journal.pbio.0060014
- Whiteley M., Diggle S. P., Greenberg E. P. // Nature. 2017. V. 555. № 7694. P. 313–320. https://doi.org/10.1038/nature25977
- Raffa R. B., Lannuzo J. R., Levine D. R., Saeid K. K., Schwartz R. C., Sucic N. T., Terleckyj O. D., Young J. M. // J. Pharmacol. Exp. Ther. 2005. V. 312. № 2. P. 417–423. https://doi.org/10.1124/jpet.104.075150
- Skandamis P. N., Nychas G.J // Appl. Environ. Microbiol. 2012. V. 78. № 16. P. 5473–5482. https://doi.org/10.1128/AEM.00468-12
- Kim T. H., Lee I., Yeon K.-M., Kim J. // J. Membr. Sci. 2018. V. 554. P. 357–365. https://doi.org/10.1016/j.memsci.2018.03.020
- Qais F. A., Shafiq A., Ahmad I., Husain F. M., Khan R. A., Hassan I. // Microb. Pathog. 2020. V. 144. P. 104172. https://doi.org/10.1016/j.micpath.2020.104172
- Ali S. G., Ansari M. A., Khan H. M., Jalal M., Mahdi A. A., Cameotra S. S. // J. Gen. Microbiol. 2016. V. 57. № 3. P. 193–203. https://doi.org/10.1002/jobm.201600175
- Singh B. R., Singh B. N., Singh A., Khan W., Naqvi A. H., Singh H. B. // Sci. Rep. 2015. V. 5. № 1. P. 13719. https://doi.org/10.1038/srep13719
- Al-Shabib N. A., Husain F. M., Ahmed F., Khan R. A., Ahmad I., Alsharaeh E., Khan M. S., Hussain A., Rehman M. T., Yusuf M., Hassan I., Khan J. M., Ashraf G. M., Alsalme A., Al-Ajmi M. F., Tarasov V. V., Aliev G. // Sci. Rep. 2016. V. 6. № 1. P. 36761. https://doi.org/10.1038/srep36761
- Naik K., Kowshik M. // J. Appl. Microbiol. 2014. V. 117. № 4. P. 972–983. https://doi.org/10.1111/jam.12589
- Miller K. P., Wang L., Chen Y.-P., Pellechia P. J., Benicewicz B. C., Decho A. W. // Front. Microbiol. 2015. V. 6. https://doi.org/10.3389/fmicb.2015.00189
- Пищик В. Н., Воробьев Н. И., Проворов Н. А., Хомяков Ю. В. // Микробиология. 2016. Т. 85. № 3. С. 231–247. https://doi.org/10.7868/S0026365616030113
- Shkodenko L., Kassirov I., Koshel E. // Microorganisms. 2020. V. 8. P. 1545. https://doi.org/10.3390/microorganisms8101545
- Lara H. H., Ayala-Nuñez N.V., Ixtepan-Turrent L., Rodriguez-Padilla C. // World J. Microbiol. Biotechnol. 2010. V. 26. P. 615–621. https://doi.org/10.1007/s11274-009-0211-3
- Salata O. // J. Nanobiotechnology. 2004. V. 2. P. 3. https://doi.org/10.1186/1477-3155-2-3
- Crabtree J. H., Burchette R. J., Siddiqi R. A., Huen I. T., Hadnott L. L., Fishman A. // Perit. Dial Int. 2003. V. 23. № 4. P. 368–374. https://doi.org/10.1177/089686080302300410
- Khare M. D., Bukhari S. S., Swann A., Spiers P., McLaren I., Myers J. // J. Infect. 2007. V. 54. № 2. P. 146–150. https://doi.org/10.1016/j.jinf.2006.03.002
- Jain P., Pradeep T. // Biotechnol. Bioeng. 2005. V. 90. № 1. P. 59–63. https://doi.org/10.1002/bit.20368
- Хина А. Г., Крутяков Ю. А. // Прикл. биохимия микробиология. 2021. Т. 57. № 6. С. 523–535.
- Крутяков Ю. А., Хина А. Г. // Прикл. биохимия микробиология. 2022. T. 58. № 5. С. 419–433.
- Petica A., Gavriliu S., Lungu M., Buruntea N., Panzaru C. // Mater. Sci. Eng. 2008. V. 152. № 1–3. P. 22–27. https://doi.org/10.1016/j.mseb.2008.06.021
- Kong H., Jang J. // Langmuir. 2008. V. 24. № 5. P. 2051–2056. https://doi.org/10.1021/la703085e
- Gupta A., Silver S. // Nat. Biotechnol. 1998. V. 16. № 10. P. 888–890. https://doi.org/10.1038/nbt1098–888
- Matsumura Y., Yoshikata K., Kunisaki S., Tsuchido T. // Appl. Environ. Microbiol. 2003. V. 69. № 7. P. 4278–4281. https://doi.org/10.1128/AEM.69.7.4278-4281.2003
- Rai M. K., Deshmukh S. D., Ingle A. P., Gade A. K. // J. Appl. Microbiol. 2012. V. 112. № 5. P. 841–852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
- Markowska K., Grudniak A., Wolska K. // Acta Biochim. Pol. 2013. V. 60. № 4. P. 523–530. https://doi.org/10.18388/abp.2013_2016
- Monteiro D., Silva S., Negri M., Gorup L., Camargo R., Oliveira R., Barbosa D., Henriques M. // J. Appl. Microbiol. 2013. V. 114. № 4. P. 1175–1183. https://doi.org/10.1111/jam.12102
- Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M. // J. Proteome Res. 2006. V. 5. № 4. P. 916–924. https://doi.org/10.1021/pr0504079
- Smetana A. B., Klabunde K. J., Marchin G. R., Sorensen C. M. // Langmuir. 2018. V. 24. № 14. P. 7457–7464. https://doi.org/10.1021/la800091y
- Sondi I., Salopek-Sondi B. // J Colloid Interface Sci. 2004. V. 275. № 1. P. 177–182. https://doi.org/10.1016/j.jcis.2004.02.012
- Gogoi S. K., Gopinath P., Paul A., Ramesh A., Ghosh S. S., Chattopadhyay A. // Langmuir 2006. V. 22. № 22. P. 9322–9328. https://doi.org/10.1021/la060661v
- Li W. R., Xie X. B., Shi Q. S., Zeng H. Y., Ou-Yang Y.S., Chen Y. B. // Appl. Microbiol. Biotechnol. 2010. V. 85. P. 1115–1122. https://doi.org/10.1007/s00253-009-2159-5
- Wu D., Fan W., Kishen A., Gutmann J. L., Fan B. // J. Endod. 2014. V. 40. № 2. P. 285–290. https://doi.org/10.1016/j.joen.2013.08.022
- Сухина М. А., Шелыгин Ю. А., Пиядина А. Ю., Фельдман Н. Б., Ананян М. А., Луценко С. В., Фролов С. А. // Колопроктология. 2019. Т. 18. № 3. С. 56–70. https://doi.org/10.33878/2073-7556-2019-18-3-56-70
- Schmidt H., Thom M., Madzgalla M., Gerbersdorf S. U., Metreveli G., Manz W. // J. Aquat. Pollut. Toxicol. 2017. V. 1. № 2. P. 9.
- Grün A. Y., Meier J., Metreveli G., Schaumann G. E., Manz W. // Environ. Sci. Pollut. Res. 2016. V. 23. № 23. P. 24277–24288. https://doi.org/10.1007/s11356-016-7691-0
- Sheng Z., Liu Y. // Water Res. V. 45. № 18. P. 6039–6050. https://doi.org/10.1016/j.watres.2011.08.065
- Cui Y., Zhao Y., Tian Y., Zhang W., Lü X., Jiang X. // Biomaterials. 2012. V. 33. № 7. P. 2327–2333. https:// doi.org/10.1016/j.biomaterials.2011.11.057
- Piktel E., Suprewicz L., Depciuch J., Chmielewska S., Sklodowski K., Daniluk T., Krol G., Kolat-Brodecka P., Bijak P., Pajor-Swierzy A., Fiedoruk K., Parlinska-Wojtan M., Bucki R. // Sci. Rep. 2021. V. 11. P. 12546. https://doi.org/10.1038/s41598-021-91847-3
- Huang Z., Zheng X., Yan D., Yin G., Liao X., Kang Y., Yao Y., Huang D., Hao B. // Langmuir. 2008. V. 24. № 8. P. 4140–4144. https://doi.org/10.1021/la7035949
- Hou J., Miao L., Wang C., Wang P., Ao Y., Qian J., Dai S. // J. Hazard. Mater. 2014. V. 276. P. 164–170. https://doi.org/10.1016/j.jhazmat.2014.04.048
- Applerot G., Lellouche J., Lipovsky A., Nitzan Y., Lubart R., Gedanken A., Banin E. // Small. 2012. V. 8. № 21. P. 3326–3337. https://doi.org/10.1002/smll.201200772
- Megarajan S., Subramaniyan S. B., Prakash S. A., Kamlekar R., Anbazhagan V. // Microb. Pathog. 2019. V. 127. P. 341–346. https://doi.org/10.1016/j.micpath.2018.12.025
- Cabral-Romero C., Hernandez-Delgadillo R., Velasco-Arias D., Diaz D., Niño-Arevalo K., Garza-Enriquez M., De la Garza-Ramos M. // Int. J. Nanomedicine. 2012. V. 7. P. 2109–2113. https://doi.org/10.2147/ijn.s29854
- Kim J. Y., Park H.-J., Lee C., Nelson K. L., Sedlak D. L., Yoon J. // Appl. Environ. Microbiol. 2010. V. 76. № 22. P. 7668–7670. https://doi.org/10.1128/aem.01009-10
- Huang L., Li D.-Q., Lin Y.-J., Wei M., Evans D. G., Duan X. // J. Inorg. Biochem. 2005. V. 153. № 5. P. 986–993. https://doi.org/10.1016/j.jinorgbio.2004.12.022
- Maruthupandy M., Rajivgandhi G. N., Quero F., Li W.-J. // J. Environ. Chem. Eng. 2020. V. 8. № 6. P. 104533. https://doi.org/10.1016/j.jece.2020.104533
- Boshagh F., Rostami K., Moazami N. // Int. J. Hydrog. Energy. 2019. V. 44. № 28. P. 14395–14405. https://doi.org/10.1016/j.ijhydene.2018.11.199
- Halkare P., Punjabi N., Wangchuk J., Nair A., Kondabagil K., Mukherji S. // Sens. Actuators B Chem. 2018. V. 281. P. 643–651. https://doi.org/10.1016/j.snb.2018.10.119
- Kuyukina M. S., Glebov G. G., Ivshina I. B. // Nanomaterials (Basel). 2022. V. 12. № 6. P. 951. https://doi.org/10.3390/nano12060951.
- Максимова Ю. Г. // Прикл. биохимия и микробиология. 2019. Т. 55. № 1. С. 3–16. https://doi.org/10.1134/S0555109919010100
- Guo Z., Xie C., Zhang P., Zhang J., Wang G., He X. et al. // Sci. Total Environ. 2017. V. 580. P. 1300–1308. https://doi.org/doi.org/10.1016/j.scitotenv.2016.12.093
- Malek I., Schaber C. F., Heinlein T., Schneider J. J., Gorb S. N., Schmitz R. A. // J. Mater. Chem. B. 2016. V. 4. № 31. P. 5228–5235. https://doi.org/10.1039/C6TB00942E
- Levi-Polyachenko N., Young C., MacNeill C., Braden A., Argenta L., Reid S. // Int. J. Hyperthermia. 2014. V. 30. № 7. P. 490–501. https://doi.org/10.3109/02656736.2014.966790
- Maksimova Yu. G., Bykova Ya. E., Zorina A. S., Nikulin S. M., Maksimov A. Yu. // Microbiology. 2022. V. 91. № 4. P. 454–462. https://doi.org/10.1134/S0026261722100861
- Maksimova Y. G., Bykova Y., Maksimov A. // Microorganisms. 2022. V. 10. № 8. P. 1627. https://doi.org/10.3390/microorganisms1008162
- Pantanella F., Berlutti F., Passeri D., Sordi D., Frioni A., Natalizi T. et al. // Interdiscip. Perspect. Infect. Dis. 2011. V. 2011. P. 291513. https://doi.org/10.1155/2011/291513
- Максимова Ю. Г., Быкова Я. Е. // Вестник Пермского университета. Серия Биология. 2022. № 2. С. 131–136. https://doi.org/10.17072/1994-9952-2022-2-131-136.
- Upadhyayula V. K. K., Gadhamshetty V. // Biotechnol. Adv. 2010. V. 28. № 6. P. 802–816. https://doi.org/10.1016/j.biotechadv.2010.06.006
- Liu Q., Zhang C., Bao Y., Dai G. // Appl. Surf. Sci. 2018. V. 443. P. 255–265. https://doi.org/10.1016/j.apsusc.2018.02.120
- Lange A., Grzenia A., Wierzbicki M., Strojny-Cieslak B., Kalińska A., Gołębiewski M. et al. // Animals. 2021. V. 11. № 7. P. 1884. https://doi.org/10.3390/ani11071884
- Altaf M., Zeyad M. T., Hashmi A., Manoharadas S., Hussain S. A., Ali Abuhasile M. S., Almuzainid M. A. M. // RSC Adv. 2021. V. 11. № 31. P. 19248–19257. https://doi.org/10.1039/D1RA02876F
Қосымша файлдар
