Application of Detectr for Selective Detection of Bacterial Phytopathogen Dickeya solani Using Recombinant CRISPR-Nuclease Cas12a Obtained by Single-Stage Chromatographic Purification
- Authors: Kurbatov L.K.1, Radko S.P.1,2, Khmeleva S.A.1, Ptitsyn K.G.1, Timoshenko O.S.1, Lisitsa A.V.1,2
- 
							Affiliations: 
							- N.V. Orekhovich Institute of Biomedical Chemistry
- University of Tyumen, West Siberia Interregional Research and Educational Center
 
- Issue: Vol 60, No 1 (2024)
- Pages: 20-28
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674571
- DOI: https://doi.org/10.31857/S0555109924010025
- EDN: https://elibrary.ru/HDBPCB
- ID: 674571
Cite item
Abstract
The work demonstrates that recombinant CRISPR-nuclease Cas12a, purified after heterologous expression with a simplified method using single-stage metal-chelate chromatography, can be successfully utilized in DETECTR technology. The combination of CRISPR-nuclease Cas12a obtained by such way with recombinase polymerase amplification (RPA) allowed one to ensure the selectivity of detection of Dickeya solani — the dangerous bacterial phytopathogen causing the potato disease known as “blackleg” — against closely related and unrelated bacterial phytopathogens with a limit of detection of 1 copy of the bacterial genome per amplification reaction. The result can be determined visually, without the use of complex instrumental methods, by changing the color of the reaction sample when illuminated with blue light that creates the basis for development of field DNA diagnostics of D. solani. The use of simplified chromatographic purification will significantly reduce the time and resources required to obtain a functionally active CRISPR-nuclease Cas12a for development and production of DNA diagnostics based on DETECTR technology.
Keywords
Full Text
 
												
	                        About the authors
L. K. Kurbatov
N.V. Orekhovich Institute of Biomedical Chemistry
							Author for correspondence.
							Email: kurbatovl@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121						
S. P. Radko
N.V. Orekhovich Institute of Biomedical Chemistry; University of Tyumen, West Siberia Interregional Research and Educational Center
														Email: radkos@yandex.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121; Tyumen, 625003						
S. A. Khmeleva
N.V. Orekhovich Institute of Biomedical Chemistry
														Email: kurbatovl@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121						
K. G. Ptitsyn
N.V. Orekhovich Institute of Biomedical Chemistry
														Email: kurbatovl@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121						
O. S. Timoshenko
N.V. Orekhovich Institute of Biomedical Chemistry
														Email: kurbatovl@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121						
A. V. Lisitsa
N.V. Orekhovich Institute of Biomedical Chemistry; University of Tyumen, West Siberia Interregional Research and Educational Center
														Email: kurbatovl@mail.ru
				                					                																			                												                	Russian Federation, 							Moscow, 119121; Tyumen, 625003						
References
- Kaminski M. M., Abudayyeh O. O., Gootenberg J. S., Zhang F., Collins J. J. // Nat. Biomed. Eng. 2021. V. 5. № 7. P. 643–656.
- Fapohunda F. O., Qiao S., Pan Y., Wang H., Liu Y., Chen Q., Lü P. // Microbiol. Res. 2022. V. 259. P. 127000. https://doi.org/10.1016/j.micres.2022.127000
- Gootenberg J. S., Abudayyeh O. O., Lee J. W., Essletzbichler P., Dy A. J., Joung J. et al. // Science. 2017. V. 356. № 6336. P. 438–442.
- Chen J. S., Ma E., Harrington L. B., Da Costa M., Tian X., Palefsky J. M., Doudna J. A. // Science. 2018. V. 360. № 6387. P. 436–439.
- Yuan B., Yuan C., Li L., Long M., Chen Z. // Molecules. 2022. V. 27. № 20. P. 6999. https://doi.org/10.3390/molecules27206970
- Lobato I. M., O’Sullivan C.K. // Trends Analyt. Chem. 2018. V. 98. P. 19–35.
- Zetsche B., Gootenberg J. S., Abudayyeh O. O., Slaymaker I. M., Makarova K. S., Essletzbichler P. et al. // Cell. 2015. V. 163. № 3. P. 759–771.
- Chen J., Huang Y., Xiao B., Deng H., Gong K., Li K., Li L., Hao W. // Front Microbiol. 2022. V. 13. P. 842415. https://doi.org/10.3389/fmicb.2022.842415
- Курбатов Л. К., Радько С. П., Кравченко С. В., Киселёва О. И., Дурманов Н. Д., Лисица А. В. // Прикл. биохимия и микробиология. 2020. Т. 56. № 6. P. 587–594.
- van der Wolf J. M., Nijhuis E. H., Kowalewska M. J., Saddler G. S., Parkinson N., Elphinstone J. G. et al. // Int. J. Syst. Evol. Microbiol. 2014. V. 64. № 3. P. 768–774.
- Toth I. K., van der Wolf J. M., Saddler G., Lojkowska E., Helias V., Pirhonen M. et al. // Plant Pathol. 2011. V. 60. № 3. P. 385–399.
- Pritchard L., Humphris S., Saddler G. S., Parkinson N. M., Bertrand V., Elphinstone J. G., Toth I. K. // Plant Pathol. 2013. V. 62. № 3. P. 587–596.
- Humphris S. N., Cahill G., Elphinstone J. G., Kelly R., Parkinson N. M., Pritchard L., Toth I. K., Saddler G. S.// Methods Mol. Biol. 2015. V. 1302. P. 1–16.
- Van Vaerenbergh J., Baeyen S., De Vos P., Maes M. // PloS One. 2012. V. 7. № 5. P. e35738. https://doi.org/10.1371/journal.pone.0035738
- Ivanov A. V., Safenkova I. V., Drenova N. V., Zherdev A. V., Dzantiev B. B. // Mol. Cell. Probes. 2020. V. 53. P. 101622. https://doi.org/10.1016/j.mcp.2020.101622
- Suprun E. V., Khmeleva S. A., Kutdusova G. R., Ptitsyn K. G., Kuznetsova V. E., Lapa S. A. et al. // Electrochem. Commun. 2021. V. 131. P. 107120. https://doi.org/10.1016/j.elecom.2021.107120
- Murugan K., Seetharam A. S., Severin A. J., Sashital D. G. // J. Biol. Chem. 2020. V. 295. P. 5538–5553.
- Mohanraju P., Oost J., Jinek M. Swarts D. // Bio-protocol. 2018. V. 8. P. e2842. https://doi.org/10.21769/BioProtoc.2842
- Moreno-Mateos M. A., Fernandez J. P., Rouet R., Vejnar C. E., Lane M. A., Mis E. et al. // Nat. Commun. 2017. V. 8. № 1. P. 2024. https://doi.org/10.1038/s41467-017-01836-2
- Tran M. H., Park H., Nobles C. L., Karunadharma P., Pan L., Zhong G., Wang H. et al. // Mol. Ther. Nucleic Acids. 2021. V. 24. P. 40–53.
- Owens R.M, Grant A., Davies N., O’Connor C.D. // Protein Expr. Purif. 2001. V. 21. № 2. P. 352–360.
- Kurbatov L. K., Radko S. P., Khmeleva S. A., Timoshenko O. S., Lisitsa A. V. // Biomed. Chem. Res. Meth. 2022. V. 5. № 4. P. e00177. https://doi.org/10.18097/BMCRM00177
- Khayi S., Blin P., Chong T. M., Robic K., Chan K. G., Faure D. // Genome Announc. 2018. V. 6. № 4. P. e01447–17. https://doi.org/10.1128/genomeA.01447-17
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted



