Metabolic Potential of Serratia sp. 22S for Chlorpheoxyacetic Acids Conversion

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A bacterial strain 22S belonging to the genus Serratia was isolated from soil samples contaminated with chemical production wastes. The strain was found to be non-pathogenic based on the study of its virulence, toxicity, infectivity and invasiveness. In batch culture, Serratia sp. 22S was able to separately utilize chlorophenoxyacetic acids (100 mg/L) as the sole source of carbon and energy. The catabolism pathway for chlorophenoxyacetic acids were suggested through complete reductive dechlorination of the substrate followed by meta-cleavage of the aromatic ring of catechol based on the compounds found in the culture medium (2,4-dichloro-6-methylphenoxyacetic, phenoxyacetic, and 2-hydroxy-2-hexenedioic acids). Intact cells experiments confirmed this assumption. In model systems, good adaptability and survival of the 22S strain in the soil was revealed, and the content of chlorophenoxyacetic acids up to a certain concentrations had a positive effect on the growth of the strain, most likely due to its selective effect.

Full Text

Restricted Access

About the authors

N. V. Zharikova

Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: puzzle111@yandex.ru
Russian Federation, Ufa, 450054

E. I. Zhurenko

Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences

Email: puzzle111@yandex.ru
Russian Federation, Ufa, 450054

V. V. Korobov

Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences

Email: puzzle111@yandex.ru
Russian Federation, Ufa, 450054

L. G. Anisimova

Research Technological Institute of Herbicides and Plant Growth Regulators with Pilot Production Academy of Sciences of Republic of Bashkortostan

Email: puzzle111@yandex.ru
Russian Federation, Ufa, 450029

G. E. Aktuganov

Ufa Institute of Biology, Ufa Federal Research Center, Russian Academy of Sciences

Email: puzzle111@yandex.ru
Russian Federation, Ufa, 450054

References

  1. Nguyen T. L. A., Dao A. T.N., Dang H. T. C., Koekkoek J., Brouwer A. de Boer T. E., van Spanning R. J. M. // Biodegradation. 2022. V. 33. P. 301–316. https://doi.org/10.1007/s10532-022-09982-1
  2. Donald D. B., Cessna A. J., Sverko E., Glozier N. E. // Environ. Health Perspect. 2007. V. 115. № 8. P. 1183–1191. https://doi.org/10. 1289/ ehp. 9435
  3. Watanabe K. // Curr. Opin. Biotechnol. 2001. V. 12. № 3. P. 237–241. https://doi.org/10. 1016/ s0958-1669(00) 00205-6
  4. Don R. H., Weightman A. J., Knackmuss H.J, Timmis K. N. // J. Bacteriol. 1985. V. 161. P. 85–90.
  5. Fulthorpe R. R., McGowan C., Maltseva O. V., Holben W. E., Tiedje J. M. // Appl. Environ. Microbiol. 1995. V. 61. P. 3274–3281.
  6. McGowan C., Fulthorpe R., Wright A., Tiedje J. M. // Appl. Environ. Microbiol. 1998. V. 64. № 10. P. 4089–4092.
  7. Cavalca L., Hartmann A., Rouard N., Soulas G. // FEMS Microb. Ecol. 1999. V. 29. P. 45–58.
  8. Vallaeys T., Courde L., McGowan C., Wright A., Fulthorpe R. R. // FEMS Microb. Ecol. 1999. V. 28. P. 373–382.
  9. Sakai Y., Ogawa N., Fujii T., Sugahara.K., Miyashita K., Hasebe A. // Microbes Environ. 2007. V. 22. P. 145–156.
  10. Baelum J., Jacobsen C. S., Holben W. E. // Syst. Appl. Microbiol. 2010. V. 33. P. 67–70.
  11. Daubaras D. L., Saido K., Chakrabarty A. M. // Appl. Environ. Microbiol. 1996. V. 62. № 11. P. 4276–4279.
  12. Zaborina O., Daubaras D. L., Zago A., Xun L., Saido K., Klem T., Nikolic D., Chakrabarty A. M. // J. Bacteriol. 1998. V. 180. № 17. P. 4667–4675.
  13. Huong N. L., Itoh K., Suyama K. // Microbes Environ. 2007. V. 22. P. 243–256.
  14. Golovleva L. A., Pertsova R. N., Evtushenko L. I., Baskunov B. P. // Biodegradation. 1990. V. 1. № 4. P. 263–271.
  15. Rice J. F., Menn F.-M., Hay A. G., Sanseverino J., Sayler G. S. // Biodegradation. 2005. V. 16. P. 501–512. https://doi.org/10.1007/s10532-004-6186-8
  16. Hayashi S., Sano T., Suyama K., Itoh K. // Microbiol. Res. 2016. V. 188–189. P. 62–71. https://doi.org/10.1016/j.micres.2016.04.014
  17. Kilbane J. J., Chatterjee D. K., Karns J. S., Kellogg S. T., Chakrabarty A. M. // Appl. Environ. Microbiol. 1982. V. 44. № 1. P. 72–78.
  18. Соляникова И. П., Протопопова Я. Ю., Травкин В. М., Головлева Л. А. // Биохимия.1996. Т. 61. № 4. С. 635–642.
  19. Han L., Zhao D., Li C. // Braz. J. Microbiol. 2015. V. 46. № 2. P. 433–441. https://doi.org/10.1590/S1517-838246220140211
  20. Manual of Methods for General Bacteriology. / Ed. P. Gerhardt. Washington: American Society for Microbiology, 1981. 536 p.
  21. Birnboim H. C., Doly, J. // Nucleic Acids Res. 1979. V. 7. № . 6. P. 1513–1523.
  22. Lane D. J. 16S/23S Sequencing // Nucleic Acid Techniques in Bacterial Systematics. / Eds. E. Stackebrandt and M. Goodfellow. Chichester: John Wiley & Sons, 1991. P. 115–175.
  23. Маниатис Т., Фрич Э., Сэмбрук Дж. Методы генетической инженерии. Молекулярное клонирование. М.: Мир, 1984. 480 c.
  24. Методы определения микроколичеств пестицидов. / Ред. Клисенко М. А. М.: Медицина, 1984. 256 с.
  25. Zharikova N. V., Iasakov T. R., Zhurenko E. I., Korobov V. V., Markusheva T. V. // Appl. Biochem. Microbiol. 2021. Т. 57. № 3. P. 335–343. https://doi.org/10.1134/S0003683821030157
  26. Миронов А. Д., Крестьянинов В. Ю., Корженевич В. И. Евтушенко И. Я., Барковский А. Л. // Прикл. биохимия и микробиология. 1991. Т. 27. № 4. С. 571–576.
  27. Головлева Л. А., Перцова Р. Н. // Доклады Академии наук СССР. 1990. Т. 314. № 4. С. 981–983.
  28. Ajithkumar B., Ajithkumar V. P., Iriye R., Doi Y., Sakai T. // Int. J. Syst. Evol. Microbiol. 2003. V. 53. P. 253–258. https://doi.org/10.1099/ijs.0.02158-0
  29. Doijad. S., Chakraborty T. // Int. J. Syst. Evol. Microbiol. 2019. V. 69. P. 3924–3926.
  30. Cho G. S., Stein M., Brinks E., Rathje J., Lee W., Suh S. H., Franz C. M.A.P. // Syst. Appl. Microbiol. 2020. V. 43. https://doi.org/10.1016/j.syapm.2020.126055
  31. Zabaloy M. C., Gómez M. A. // Argentina Annals of Microbiology. 2014. V. 64. P. 969–974. https://doi.org/10.1007/s13213-013-0731-9
  32. Жарикова Н. В., Ясаков Т. Р., Журенко Е. Ю., Коробов В. В., Маркушева Т. В. // Успехи современной биологии. 2017. Т. 137. № 5. С. 514–528. https://doi.org/10.7868/S0042132417050076
  33. Коробов В. В., Маркушева Т. В., Кусова И. В., Журенко Е. Ю., Галкин Е. Г., Жарикова Н. В., Гафиятова Л. Р. // Биотехнология. 2006. № 2. С. 63–65.
  34. Balajee S., Mahadevan A. // Xenobiotica. 1990. V. 20. № 6. P. 607–617. https://doi.org/10.3109/00498259009046876
  35. Korobov V. V., Zhurenko E. Y., Galkin E. G., Zharikova N. V., Iasakov T. R., Starikov S. N., Sagitova A. I., Markusheva T. V. // Microbiology. 2018. Т. 87. № 1. С. 147–150. https://doi.org/10.1134/S0026261718010101
  36. Harwood C. S., Parals R. E. // Ann. Rev. Microbiol. 1996. V. 50. P. 553–590. https://doi.org/10.1146/annurev.micro.50.1.553
  37. Enguita F. J., Leitão A. L. // Biomed Res. Int. 2013. V. 2013. https://doi.org/10.1155/2013/542168

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Pathways of aerobic degradation of chlorinated phenoxyacetic acids in bacteria: a — 2,4-D of C. necator strain JMP134 [4], b — 2,4,5-T of B. phenoliruptrix strain AC1100 [11, 12]: I — 2,4-D; II — 2,4-dichlorophenol; III — 2,4-dichlorocatechol; IV — 2,4-dichloro-cis, cis-muconate; V — trans-2-chlorodiene lactone; VI — cis-2-chlorodiene lactone; VII — 2-chloromaleyl acetic acid; VIII — 2,4,5-T; IX — 2,4,5-trichlorophenol; X — 2,5-dichlorohydroquinone; XI — 5-chlorohydroxyhydroquinone; XII — 2-hydroxy-1,4-benzoquinone; XIII — hydroxyhydroquinone; XIV — maleyl acetic acid; XV — β-ketoadipate; TCA — tricarboxylic acid cycle.

Download (215KB)
3. Fig. 2. Phylogenetic tree of 16S rRNA of strain 22S and homologous sequences of type species of bacteria close to the genus Serratia, constructed by the “Neighbor-Joining” method. The numbers indicate the reliability of branching calculated using “bootstrap” analysis (values ​​greater than 50 are considered significant). The scale reflects the evolutionary distance corresponding to 5 nucleotide substitutions per 1000 nucleotides. The numbers in the database (GenBank) are given in brackets.

Download (333KB)
4. Fig. 3. Dependence of OP590 (1) of the culture liquid and the concentration of 2,4-D (a, 2) and 2,4,5-T (b, 2) on the cultivation time of Serratia sp. 22S in a periodic culture:

Download (92KB)
5. Fig. 4. The main pathways of aerobic cleavage of the aromatic ring of catechol (a) and hydroquinone (b) [35, 36]: I — catechol, II — muconic acid, III — 2-hydroxymuconic semialdehyde, IV — hydroquinone, V — 4-hydroxymuconic semialdehyde, VI — hydroxyhydroquinone, VII — 4-maleyl acetic acid.

Download (125KB)
6. Fig. 5. The number of cells of the strain Serratia sp. 22S (CFU) in clean (1) and contaminated with 2,4,5-T (a) and 2,4-D (b) soil at 100 MAC (2), 1000 MAC (3) and 10,000 PCD (4).

Download (120KB)
7. Fig.1

Download (4KB)
8. Fig.2

Download (3KB)
9. Fig.3

Download (3KB)

Copyright (c) 2024 Russian Academy of Sciences