Characteristics of Bacillus cereus complex Group Strains Isolated from Permafrost in Yakutia for Assessment of Microbiological Risks During Climate Change

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Strains of Bacillus genus were isolated from soil samples in the permafrost region (Yakutia, Russia). The phenotypic characteristics of the strains are given. The analysis of the obtained data made it possible to assign them to the group Bacillus cereus complex. PCR analysis made it possible to determine the profile of B. cereus toxin synthesis genes in the genomes of the studied strains. Genetic characterization was obtained by RAPD genotyping and using MLVA loci used for genotyping of the anthrax pathogen. The results of genotyping at different levels of resolution made it possible to differentiate the studied strains from the B. anthracis species, to show their intraspecific genetic differences and the degree of relationship. Whole genome sequencing was carried out, based on the data of which MLST genotyping was carried out, which revealed 2 known sequence types and one new one, described for the first time in this work. The results obtained are of practical importance and are extremely interesting from the point of view of the evolution and phylogeography of the B. cereus complex group, since the fact that strains were isolated from permafrost suggests that their age may be much older than expected.

About the authors

Y. O. Goncharova

State Research Center for Applied Microbiology and Biotechnology

Author for correspondence.
Email: iulia.belay@yandex.ru
Russia, 142279, Moscow region, Obolensk

V. S. Timofeev

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

A. V. Brushkov

Moscow State University M.V. Lomonosov; Tyumen State University

Email: ignatov@obolensk.org
Russia, 119991, Moscow; Russia, 625003, Tyumen

T. B. Kravchenko

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

I. V. Bahtejeva

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

G. M. Titareva

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

V. I. Solomentsev

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

A. A. Sizova

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

A. G. Bogun

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

K. V. Khlopova

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

R. I. Mironova

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

V. V. Evseeva

State Research Center for Applied Microbiology and Biotechnology

Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk

S. G. Ignatov

State Research Center for Applied Microbiology and Biotechnology; Moscow State University M.V. Lomonosov

Author for correspondence.
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk; Russia, 119991, Moscow

References

  1. Stepanov I., Makarov I., Makarova E. et al. // Climatic Change. 2023. V. 176. № 4. P. 39. https://doi.org/10.1007/s10584-023-03512-5
  2. Baldwin V.M. // Front. Microbiol. 2020. P. 11. https://doi.org/10.3389/fmicb.2020.01731
  3. Carroll L.M., Kovac J., Miller R.A., Wiedmann M. // Appl. Environ. Microbiol. 2017. V. 83. № 17. e01096-17. https://doi.org/10.1128/AEM.01096-17
  4. Jovanovic J., Ornelis V.F.M., Madder A., Rajkovic A. // Compr. Rev. Food. Sci. Food. Saf. 2021. V. 20. № 4. P. 3719–3761. https://doi.org/10.1111/1541-4337.12785
  5. Маринин Л.И., Онищенко Г.Г., Кравченко Т.Б., Дятлов И.А., Тюрин Е.А., Степанов А.В. Сибирская язва человека: эпидемиология, профилактика, диагностика, лечение. / М.: ЗАО МП Гигиена, 2008. 416 с.
  6. Маринин Л.И., Дятлов И.А., Мокриевич А.Н. Методы изучения биологических и молекулярно-генетических свойств возбудителя сибирской язвы: учебно-методическое пособие. / Ред. И.А. Дятлов. М.: Издательство “Династия”, 2021. 240 с.
  7. Drean P., Fox E.M. // Methods Mol. Biol. 2015. № 1301. P. 71–83. https://doi.org/10.1007/978-1-4939-2599-5_7
  8. Daffonchio D., Borin S., Frova G., Gallo R., Mori E., Fani R. et al. // Appl. Environ. Microbiol. 1999. V. 65. № 3. P. 1298–303. https://doi.org/10.1128/AEM.65.3.1298-1303.1999
  9. Oh M.H., Ham J.S., Cox J.M. // Int. J. Food Microbiol. 2012. V. 152. № 1–2. P. 1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.09.018
  10. Ripabelli G., McLauchlin J., Mithani V., Threlfall E.J. // Lett. Appl. Microbiol. 2000. V. 30. № 5. P. 358–63. https://doi.org/10.1046/j.1472-765x.2000.00729.x
  11. Hill K.K., Ticknor L.O., Okinaka R.T., Asay M., Blair H., Bliss K.A. et al. // Appl. Environ. Microbiol. 2004. V. 70. № 2. P. 1068–1080. https://doi.org/10.1128/AEM.70.2.1068-1080.2004
  12. Helgason E., Okstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. // Appl. Environ. Microbiol. 2000. V. 66. № 6. P. 2627–2630. https://doi.org/10.1128/AEM.66.6.2627-2630.2000
  13. Helgason E., Tourasse N.J., Meisal R., Caugant D.A., Kolstø A.B. // Appl. Environ. Microbiol. 2004. V. 70. № 1. P. 191–201. https://doi.org/10.1128/AEM.70.1.191-201.2004
  14. Priest F.G., Barker M., Baillie L.W., Holmes E.C., Maiden M.C. // J. Bacteriol. 2004. V. 186. № 23. P. 7959–7970. https://doi.org/10.1128/JB.186.23.7959-7970.2004
  15. Keim P., Price L.B., Klevytska A.M., Smith K.L., Schupp J.M., Okinaka R. et al. // J. Bacteriol. 2000. V. 182. № 10. P. 2928–2936. https://doi.org/10.1128/JB.182.10.2928-2936.2000
  16. Timofeev V., Bahtejeva I., Mironova R., Titareva G., Lev I., Christiany D. et al. // PLoS One. 2019. V. 14. № 5. e0209140. https://doi.org/10.1371/journal.pone.0209140
  17. Ehling-Schulz M., Guinebretiere M.H., Monthan A., Berge O. // FEMS Microbiol. Lett. 2006. V. 260. № 2. P. 232–240. https://doi.org/10.1111/j.1574-6968.2006.00320.x
  18. Marxen S., Stark T.D., Frenzel E., Rütschle A., Lücking G., Pürstinger G. et al. // Anal. Bioanal. Chem. 2015. V. 407. № 9. P. 2439–2453. https://doi.org/10.1007/s00216-015-8511-y
  19. Dietrich R., Jessberger N., Ehling-Schulz M., Märtlbauer E., Granum P.E. // Toxins (Basel). 2021. V. 13. № 2. P. 98. https://doi.org/10.3390/toxins13020098
  20. Kim J.B., Kim J.M., Kim S.Y., Kim J.H., Park Y.B., Choi N.J. et al. // J Food Prot. 2010. V. 73. № 7. P. 1219–1224. https://doi.org/10.4315/0362-028x-73.7.1219
  21. Kim J.M., Forghani F., Kim J.B., Park Y.B., Park M.S., Wang J. et al. // Food Science and Biotechnology. 2012. V. 21. № 5. P. 1439–1444. https://doi.org/10.1007/s10068-012-0189-8
  22. Tallent S.M., Hait J.M., Bennett R.W. // J. Appl. Microbiol. 2015. V. 118. № 4. P. 1068–1075. https://doi.org/10.1111/jam.12766
  23. Tsilia V., Devreese B., de Baenst I., Mesuere B., Rajkovic A., Uyttendaele M. et al. // Anal. Bioanal. Chem. 2012. V. 404. № 6–7. P. 1691–1702. https://doi.org/10.1007/s00216-012-6254-6
  24. Inatsu Y., Chotiko A., Ananchaipattana C. // Japan Agricultural Research Quarterly: JARQ. 2020. V. 54. № 1. P. 47–51. https://doi.org/10.6090/jarq.54.47
  25. Kuwana R., Imamura D., Takamatsu H., Watabe K. // Biocontrol Sci. 2012. V. 17. № 2. P. 83–86. https://doi.org/10.4265/bio.17.83
  26. Le Flèche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V. et al. // BMC Microbiol. 2001. V. 1. P. 2. https://doi.org/10.1186/1471-2180-1-2
  27. Lista F., Faggioni G., Valjevac S., Ciammaruconi A., Vaissaire J., le Doujet C. et al. // BMC Microbiol. 2006. V. 6. P. 33. https://doi.org/10.1186/1471-2180-6-33
  28. Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J. et al. // PLoS One. 2007. V. 2. № 5. e461. https://doi.org/10.1371/journal.pone.0000461
  29. Thierry S., Tourterel C., Le Flèche P., Derzelle S., Dekhil N., Mendy C. et al. // PLoS One. 2014. V. 9. № 6. e95131. https://doi.org/10.1371/journal.pone.0095131
  30. Turnbull P.C. // J. Appl. Microbiol. 1999. V. 87. № 2. P. 237–240. https://doi.org/10.1046/j.1365-2672.1999.00876.x
  31. Marston C.K., Gee J.E., Popovic T., Hoffmaster A.R. // BMC Microbiol. 2006. V. 6. P. 22. https://doi.org/10.1186/1471-2180-6-22
  32. Calvigioni M., Cara A., Celandroni F., Mazzantini D., Panattoni A., Tirloni E. et al. // J. Appl. Microbiol. 2022. V. 133. № 2. P. 1078–1088. https://doi.org/10.1111/jam.15636
  33. Valjevac S., Hilaire V., Lisanti O., Ramisse F., Hernandez E., Cavallo J.D. et al. // Appl. Environ. Microbiol. 2005. V. 71. № 11. P. 6613–6623. https://doi.org/10.1128/AEM.71.11.6613-6623.2005
  34. Antonation K.S., Grützmacher K., Dupke S., Mabon P., Zimmermann F., Lankester F. et al. // PLoS Negl. Trop. Dis. 2016. V. 10. № 9. e0004923. https://doi.org/10.1371/journal.pntd.0004923
  35. Goncharova Y., Bahtejeva I., Titareva G., Kravchenko T., Lev A., Dyatlov I., Timofeev V. // Pathogens. 2021. V. 10. № 12. P. 1556. https://doi.org/10.3390/pathogens10121556
  36. Kolstø A.B., Tourasse N.J., Økstad O.A. // Annu. Rev. Microbiol. 2009. № 63. P. 451–476. https://doi.org/10.1146/annurev.micro.091208.073255
  37. Federhen S., Rossello-Mora R., Klenk H.P., Tindall B.J., Konstantinidis K.T., Whitman W.B. et al. // Stand. Genomic Sci. 2016. V. 11. № 1. https://doi.org/10.1186/s40793-016-0134-1
  38. Ciufo S., Kannan S., Sharma S., Badretdin A., Clark K., Turner S. et al. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. № 7. P. 2386–2392. https://doi.org/10.1099/ijsem.0.002809
  39. Stella E., Mari L., Gabrieli J., Barbante C., Bertuzzo E. // Sci. Rep. 2020. V. 10. № 1. P. 16460. https://doi.org/10.1038/s41598-020-72440-6
  40. da Silva T.H., Queres Gomes E.C., Gonçalves V.N., da Costa M.C., Valério A.D., de Assis Santos D. et al. // Fungal Biol. 2022. V. 126. № 8. P. 488–497. https://doi.org/10.1016/j.funbio.2022.04.003

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (911KB)
3.

Download (900KB)

Copyright (c) 2023 Ю.О. Гончарова, В.В. Евсеева, Р.И. Миронова, К.В. Хлопова, А.Г. Богун, А.А. Сизова, В.И. Соломенцев, Г.М. Титарева, И.В. Бахтеева, Т.Б. Кравченко, А.В. Брушков, В.С. Тимофеев, С.Г. Игнатов