Characteristics of Bacillus cereus complex Group Strains Isolated from Permafrost in Yakutia for Assessment of Microbiological Risks During Climate Change
- Authors: Goncharova Y.O.1, Timofeev V.S.1, Brushkov A.V.2,3, Kravchenko T.B.1, Bahtejeva I.V.1, Titareva G.M.1, Solomentsev V.I.1, Sizova A.A.1, Bogun A.G.1, Khlopova K.V.1, Mironova R.I.1, Evseeva V.V.1, Ignatov S.G.1,2
-
Affiliations:
- State Research Center for Applied Microbiology and Biotechnology
- Moscow State University M.V. Lomonosov
- Tyumen State University
- Issue: Vol 59, No 6 (2023)
- Pages: 589-598
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674589
- DOI: https://doi.org/10.31857/S0555109923060053
- EDN: https://elibrary.ru/CVASHJ
- ID: 674589
Cite item
Abstract
Strains of Bacillus genus were isolated from soil samples in the permafrost region (Yakutia, Russia). The phenotypic characteristics of the strains are given. The analysis of the obtained data made it possible to assign them to the group Bacillus cereus complex. PCR analysis made it possible to determine the profile of B. cereus toxin synthesis genes in the genomes of the studied strains. Genetic characterization was obtained by RAPD genotyping and using MLVA loci used for genotyping of the anthrax pathogen. The results of genotyping at different levels of resolution made it possible to differentiate the studied strains from the B. anthracis species, to show their intraspecific genetic differences and the degree of relationship. Whole genome sequencing was carried out, based on the data of which MLST genotyping was carried out, which revealed 2 known sequence types and one new one, described for the first time in this work. The results obtained are of practical importance and are extremely interesting from the point of view of the evolution and phylogeography of the B. cereus complex group, since the fact that strains were isolated from permafrost suggests that their age may be much older than expected.
Keywords
About the authors
Y. O. Goncharova
State Research Center for Applied Microbiology and Biotechnology
Author for correspondence.
Email: iulia.belay@yandex.ru
Russia, 142279, Moscow region, Obolensk
V. S. Timofeev
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
A. V. Brushkov
Moscow State University M.V. Lomonosov; Tyumen State University
Email: ignatov@obolensk.org
Russia, 119991, Moscow; Russia, 625003, Tyumen
T. B. Kravchenko
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
I. V. Bahtejeva
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
G. M. Titareva
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
V. I. Solomentsev
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
A. A. Sizova
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
A. G. Bogun
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
K. V. Khlopova
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
R. I. Mironova
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
V. V. Evseeva
State Research Center for Applied Microbiology and Biotechnology
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk
S. G. Ignatov
State Research Center for Applied Microbiology and Biotechnology; Moscow State University M.V. Lomonosov
Author for correspondence.
Email: ignatov@obolensk.org
Russia, 142279, Moscow region, Obolensk; Russia, 119991, Moscow
References
- Stepanov I., Makarov I., Makarova E. et al. // Climatic Change. 2023. V. 176. № 4. P. 39. https://doi.org/10.1007/s10584-023-03512-5
- Baldwin V.M. // Front. Microbiol. 2020. P. 11. https://doi.org/10.3389/fmicb.2020.01731
- Carroll L.M., Kovac J., Miller R.A., Wiedmann M. // Appl. Environ. Microbiol. 2017. V. 83. № 17. e01096-17. https://doi.org/10.1128/AEM.01096-17
- Jovanovic J., Ornelis V.F.M., Madder A., Rajkovic A. // Compr. Rev. Food. Sci. Food. Saf. 2021. V. 20. № 4. P. 3719–3761. https://doi.org/10.1111/1541-4337.12785
- Маринин Л.И., Онищенко Г.Г., Кравченко Т.Б., Дятлов И.А., Тюрин Е.А., Степанов А.В. Сибирская язва человека: эпидемиология, профилактика, диагностика, лечение. / М.: ЗАО МП Гигиена, 2008. 416 с.
- Маринин Л.И., Дятлов И.А., Мокриевич А.Н. Методы изучения биологических и молекулярно-генетических свойств возбудителя сибирской язвы: учебно-методическое пособие. / Ред. И.А. Дятлов. М.: Издательство “Династия”, 2021. 240 с.
- Drean P., Fox E.M. // Methods Mol. Biol. 2015. № 1301. P. 71–83. https://doi.org/10.1007/978-1-4939-2599-5_7
- Daffonchio D., Borin S., Frova G., Gallo R., Mori E., Fani R. et al. // Appl. Environ. Microbiol. 1999. V. 65. № 3. P. 1298–303. https://doi.org/10.1128/AEM.65.3.1298-1303.1999
- Oh M.H., Ham J.S., Cox J.M. // Int. J. Food Microbiol. 2012. V. 152. № 1–2. P. 1–8. https://doi.org/10.1016/j.ijfoodmicro.2011.09.018
- Ripabelli G., McLauchlin J., Mithani V., Threlfall E.J. // Lett. Appl. Microbiol. 2000. V. 30. № 5. P. 358–63. https://doi.org/10.1046/j.1472-765x.2000.00729.x
- Hill K.K., Ticknor L.O., Okinaka R.T., Asay M., Blair H., Bliss K.A. et al. // Appl. Environ. Microbiol. 2004. V. 70. № 2. P. 1068–1080. https://doi.org/10.1128/AEM.70.2.1068-1080.2004
- Helgason E., Okstad O.A., Caugant D.A., Johansen H.A., Fouet A., Mock M., Hegna I., Kolstø A.B. // Appl. Environ. Microbiol. 2000. V. 66. № 6. P. 2627–2630. https://doi.org/10.1128/AEM.66.6.2627-2630.2000
- Helgason E., Tourasse N.J., Meisal R., Caugant D.A., Kolstø A.B. // Appl. Environ. Microbiol. 2004. V. 70. № 1. P. 191–201. https://doi.org/10.1128/AEM.70.1.191-201.2004
- Priest F.G., Barker M., Baillie L.W., Holmes E.C., Maiden M.C. // J. Bacteriol. 2004. V. 186. № 23. P. 7959–7970. https://doi.org/10.1128/JB.186.23.7959-7970.2004
- Keim P., Price L.B., Klevytska A.M., Smith K.L., Schupp J.M., Okinaka R. et al. // J. Bacteriol. 2000. V. 182. № 10. P. 2928–2936. https://doi.org/10.1128/JB.182.10.2928-2936.2000
- Timofeev V., Bahtejeva I., Mironova R., Titareva G., Lev I., Christiany D. et al. // PLoS One. 2019. V. 14. № 5. e0209140. https://doi.org/10.1371/journal.pone.0209140
- Ehling-Schulz M., Guinebretiere M.H., Monthan A., Berge O. // FEMS Microbiol. Lett. 2006. V. 260. № 2. P. 232–240. https://doi.org/10.1111/j.1574-6968.2006.00320.x
- Marxen S., Stark T.D., Frenzel E., Rütschle A., Lücking G., Pürstinger G. et al. // Anal. Bioanal. Chem. 2015. V. 407. № 9. P. 2439–2453. https://doi.org/10.1007/s00216-015-8511-y
- Dietrich R., Jessberger N., Ehling-Schulz M., Märtlbauer E., Granum P.E. // Toxins (Basel). 2021. V. 13. № 2. P. 98. https://doi.org/10.3390/toxins13020098
- Kim J.B., Kim J.M., Kim S.Y., Kim J.H., Park Y.B., Choi N.J. et al. // J Food Prot. 2010. V. 73. № 7. P. 1219–1224. https://doi.org/10.4315/0362-028x-73.7.1219
- Kim J.M., Forghani F., Kim J.B., Park Y.B., Park M.S., Wang J. et al. // Food Science and Biotechnology. 2012. V. 21. № 5. P. 1439–1444. https://doi.org/10.1007/s10068-012-0189-8
- Tallent S.M., Hait J.M., Bennett R.W. // J. Appl. Microbiol. 2015. V. 118. № 4. P. 1068–1075. https://doi.org/10.1111/jam.12766
- Tsilia V., Devreese B., de Baenst I., Mesuere B., Rajkovic A., Uyttendaele M. et al. // Anal. Bioanal. Chem. 2012. V. 404. № 6–7. P. 1691–1702. https://doi.org/10.1007/s00216-012-6254-6
- Inatsu Y., Chotiko A., Ananchaipattana C. // Japan Agricultural Research Quarterly: JARQ. 2020. V. 54. № 1. P. 47–51. https://doi.org/10.6090/jarq.54.47
- Kuwana R., Imamura D., Takamatsu H., Watabe K. // Biocontrol Sci. 2012. V. 17. № 2. P. 83–86. https://doi.org/10.4265/bio.17.83
- Le Flèche P., Hauck Y., Onteniente L., Prieur A., Denoeud F., Ramisse V. et al. // BMC Microbiol. 2001. V. 1. P. 2. https://doi.org/10.1186/1471-2180-1-2
- Lista F., Faggioni G., Valjevac S., Ciammaruconi A., Vaissaire J., le Doujet C. et al. // BMC Microbiol. 2006. V. 6. P. 33. https://doi.org/10.1186/1471-2180-6-33
- Van Ert M.N., Easterday W.R., Huynh L.Y., Okinaka R.T., Hugh-Jones M.E., Ravel J. et al. // PLoS One. 2007. V. 2. № 5. e461. https://doi.org/10.1371/journal.pone.0000461
- Thierry S., Tourterel C., Le Flèche P., Derzelle S., Dekhil N., Mendy C. et al. // PLoS One. 2014. V. 9. № 6. e95131. https://doi.org/10.1371/journal.pone.0095131
- Turnbull P.C. // J. Appl. Microbiol. 1999. V. 87. № 2. P. 237–240. https://doi.org/10.1046/j.1365-2672.1999.00876.x
- Marston C.K., Gee J.E., Popovic T., Hoffmaster A.R. // BMC Microbiol. 2006. V. 6. P. 22. https://doi.org/10.1186/1471-2180-6-22
- Calvigioni M., Cara A., Celandroni F., Mazzantini D., Panattoni A., Tirloni E. et al. // J. Appl. Microbiol. 2022. V. 133. № 2. P. 1078–1088. https://doi.org/10.1111/jam.15636
- Valjevac S., Hilaire V., Lisanti O., Ramisse F., Hernandez E., Cavallo J.D. et al. // Appl. Environ. Microbiol. 2005. V. 71. № 11. P. 6613–6623. https://doi.org/10.1128/AEM.71.11.6613-6623.2005
- Antonation K.S., Grützmacher K., Dupke S., Mabon P., Zimmermann F., Lankester F. et al. // PLoS Negl. Trop. Dis. 2016. V. 10. № 9. e0004923. https://doi.org/10.1371/journal.pntd.0004923
- Goncharova Y., Bahtejeva I., Titareva G., Kravchenko T., Lev A., Dyatlov I., Timofeev V. // Pathogens. 2021. V. 10. № 12. P. 1556. https://doi.org/10.3390/pathogens10121556
- Kolstø A.B., Tourasse N.J., Økstad O.A. // Annu. Rev. Microbiol. 2009. № 63. P. 451–476. https://doi.org/10.1146/annurev.micro.091208.073255
- Federhen S., Rossello-Mora R., Klenk H.P., Tindall B.J., Konstantinidis K.T., Whitman W.B. et al. // Stand. Genomic Sci. 2016. V. 11. № 1. https://doi.org/10.1186/s40793-016-0134-1
- Ciufo S., Kannan S., Sharma S., Badretdin A., Clark K., Turner S. et al. // Int. J. Syst. Evol. Microbiol. 2018. V. 68. № 7. P. 2386–2392. https://doi.org/10.1099/ijsem.0.002809
- Stella E., Mari L., Gabrieli J., Barbante C., Bertuzzo E. // Sci. Rep. 2020. V. 10. № 1. P. 16460. https://doi.org/10.1038/s41598-020-72440-6
- da Silva T.H., Queres Gomes E.C., Gonçalves V.N., da Costa M.C., Valério A.D., de Assis Santos D. et al. // Fungal Biol. 2022. V. 126. № 8. P. 488–497. https://doi.org/10.1016/j.funbio.2022.04.003
