The Perspective Properties and the Directions of Bacillus thuringiensis Use for Plant Protection

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the urgent problems of plant protection from pests and diseases is the creation of environmentally safe biocontrol agents, the use of which would not be accompanied by an increase of the resistance of insect pests. Microorganisms have great potential in this regard. The most promising group are endophytes, which inhabit the internal tissues of plants and participate in formation of the phenotype of plant organisms. Bacteria of the genus Bacillus are of particular interest due to their wide distribution in the nature, the safety of many species for humans, and the relative ease with which biocontrol means based on Bacillus sp. could be obtained. The review considers the properties and activity of B. thuringiensis as follows: endophytic, insecticidal, antibiotic activity, production of growth regulators and mobilization of plant nutrients, resistance induction, as well as the possibility of constructing new strains using genetic engineering methods.

About the authors

R. M. Khairullin

Institute of Biochemistry and Genetics of Ufa Federal Research Center
of Russian Academy of Sciences

Author for correspondence.
Email: krm62@mail.ru
Russia, 450054, Ufa

A. V. Sorokan

Institute of Biochemistry and Genetics of Ufa Federal Research Center
of Russian Academy of Sciences

Email: krm62@mail.ru
Russia, 450054, Ufa

V. F. Gabdrakhmanova

Institute of Biochemistry and Genetics of Ufa Federal Research Center
of Russian Academy of Sciences

Email: krm62@mail.ru
Russia, 450054, Ufa

I. V. Maksimov

Institute of Biochemistry and Genetics of Ufa Federal Research Center
of Russian Academy of Sciences

Email: krm62@mail.ru
Russia, 450054, Ufa

References

  1. Ishiwata S. // Rept Assoc Seric. 1905. V. 160. P. 1–8.
  2. Berliner E. // J. Applied Entomology. 1915. V. 2. № 1. P. 29–56.
  3. Lord J.C. // J. Invertebrate Pathol. 2005. V. 89. № 1. P. 19–29.
  4. Долженко Т.В. // Биология растений и садоводство: теория, инновации. 2021. № 3(160). С. 50–62.
  5. Peterson J.A., Ode P.J., Oliveira-Hofman C., Harwood J.D. // Front. Plant Science. 2016. V. 7. Art.1794. https://doi.org/10.3389/fpls.2016.01794
  6. Шеина Н.И., Буданова Е.В., Мялина Л.И., Сазонова Л.П., Колесникова В.В. // Токсикологический вестник. 2018. № 1(148). С. 35–37.
  7. Priščepa L., Stankevičienė A., Sneškienė V. // Miestų želdynų formavimas. 2016. № 1(13). P. 315–322.
  8. Lecadet M.-M., Frachon E., Cosmao Dumanoir V., Ripouteau H., Hamon S., Laurent P. et al. // J. Applied Microbiol. 1999. V. 86. P. 660–672.
  9. Atsumi S., Mizuno E., Hara H., Nakanishi K., Kitami M., Miura N. et al. // Appl. Environ. Microbiol. 2005. V. 71. № 7. P. 3966–3977.
  10. Flores A., Diaz-Zamora J.T., Orozco-Mosqueda M.D.C., Chávez A., de Los Santos-Villalobos S., Valencia-Cantero E. et al. // Biotech. 2020. V. 10. № 5. Art. 220. https://doi.org/10.1007/s13205-020-02209-1
  11. Liu Y., Du J., Lai Q., Zeng R., Ye D., Xu J., Shao Z. // Int. J. Syst. Evol. Microbiol. 2017. V. 67. № 8. P. 2499–2508.
  12. Carroll L.M., Cheng R.A., Wiedmann M., Kovac J. // Crit. Rev. Food. Sci. Nutr. 2022. V. 62. № 28. P. 7677–7702.
  13. Muigg V., Cuénod A., Purushothaman S., Siegemund M., Wittwer M., Pflüger V., Schmidt K.M. // New Microbes. New Infect. 2022. V. 26. P. 49–50.
  14. Wei S., Chelliah R., Park B.-J., Kim S.-H., Forghani F., Cho M.S. et al. // Front. Microbiol. 2019. V. 10. Art. 883. https://doi.org/10.3389/fmicb.2019.00883
  15. Schoch C.L., Ciufo S., Domrachev M., Hotton C.L., Kannan S., Khovanskaya R., Leipe D. // Database (Oxford). 2020. V. 2020. Art. baaa062. https://doi.org/10.1093/database/baaa062
  16. Rahman M.-M., Lim S.-J., Park Y.-C. // Animals. 2022. V. 12. Art. 979.
  17. Martin P.A.W., Travers R.S. // Appl. Envir. Microbiol. 1989. V. 55. P. 2437–2442.
  18. Elliot S.L., Sabelis M.W., Janssen A., van der Geest L.P.S., Beerling E.A.M. et al. // Ecology Letters. 2000. V. 3. P. 228–235.
  19. Raymond B., Elliot S.L., Ellis R.J. // J. Invertebrate Pathol. 2008. V. 98. P. 307–313.
  20. Li M., Shu C., Ke W., Li X., Yu Y., Guan X., Huang T. // Front. Microbiol. 2021. V. 12. Art. 676146.
  21. Lin Y., Alstrup M., Pang J.K.Y., Maróti G., Er-Rafik M. Tourasse N. et al. // mSystems. 2021. V. 6. № 5. Art. e0086421. https://doi.org/10.1128/mSystems.00864-21
  22. Smith R.A., Barry J.W. // J. Invertebr. Pathol. 1998. V. 71. № 3. P. 263–267.
  23. Bizzarri M.F., Bishop A.H. // J. Invertebr. Pathol. 2007. V. 94. № 1. P. 38–47.
  24. Perez K.J., Viana J.d.S., Lopes F.C., Pereira J.Q., dos Santos D.M., Oliveira J.S. et al. // Front. Microbiol. 2017. V. 8. Art. 61. https://doi.org/10.3389/fmicb.2017.00061
  25. Takahashi H., Nakaho K., Ishihara T., Ando S., Wada T., Kanayama Y. et al. // Plant Cell Rep. 2014. V. 33. P. 99–110.
  26. Bizzarri M.F., Bishop A.H. // Microb. Ecol. 2008. V. 56. № 1. P. 133–139.
  27. Monnerat R.G., Soares C.M., Capdeville G., Jones G., Martins É.S., Praça L. et al. // Microb. Biotechnol. 2009. V. 2. № 4. P. 512–520.
  28. Mundt J.O., Hinkle N.F. // Appl. Environ. Microbiol. 1976. V. 32. № 5. P. 694–698.
  29. Subrahmanyan P., Reddy M.N., Rao A.S. // Seed Sci. Technol. 1983. V. 11. P. 267–272.
  30. McInroy J.A., Kloepper J.W. // Plant and Soil. 1995. V. 173. P. 337–342.
  31. Miguel P.S.B., Delvaux J.C., De Oliveira M.N.V., Monteiro L.C.P., Costa M.D., Totola M.R. et al. // Afr. J. Microbiol. Res. 2013. V. 7. № 7. P. 586–594.
  32. Ma L., Cao Y.H., Cheng M.H., Huang Y., Mo M.H., Wang Y. et al. // Antonie Van Leeuwenhoek. 2013. V. 103. № 2. P. 299–312.
  33. Souza A., Cruz J.C., Sousa N.R., Procópio A.R., Silva G.F. // Genet. Mol. Res. 2014. V. 13. № 4. P. 8661–8670.
  34. Hong Z., Chen W., Rong X., Cai P., Tan W., Huang Q. // Chem. Geol. 2015. V. 416. P. 19–27.
  35. Hernández-Pacheco C.E., Orozco-Mosqueda M.D.C., Flores A., Valencia-Cantero E., Santoyo G. // Curr. Res. Microb. Sci. 2021. V. 2. Art. 100028.
  36. Sharma M., Mallubhotla S. // Front. Microbiol. 2022. V. 13. Art. 879386. https://doi.org/10.3389/fmicb.2022.879386
  37. Manjunatha B.S., Paul S., Aggarwal C., Bandeppa S., Govindasamy V., Dukare A.S. et al. // Microb. Ecol. 2019. V. 77. P. 676–688.
  38. Rocha F.Y.O., Negrisoli Júnior A.S., de Matos G.F., Gitahy P.M., Rossi C.N., Vidal M.S. et al. // Front. Microbiol. 2021. V.12. Art. 659965. https://doi.org/10.3389/fmicb.2021.659965
  39. Pal G., Kumar K., Verma A., Verma S.K. // Microbiol Res. 2022. V. 255. Art. 126926. https://doi.org/10.1016/j.micres.2022.127201
  40. Abedinzadeh M., Etesami H., Alikhani H.A. // Biotechnol. Rep. (Amst). 2019. V. 21. Art. e00305. https://doi.org/10.1016/j.btre.2019.e00305
  41. Compant S., Mitter B., Colli-Mull J.G., Gangl H., Sessitsch A. // Microb Ecol. 2011. V. 62. P. 188–197.
  42. Wahlang B., Sen S., Roy J.D. // Indian J. Appl. Pure Bio. 2022. V. 37. № 2. P. 438–448.
  43. Tao A., Panga F., Huang S., Yu G., Li B., Wang T. // Biocontrol Science and Technology. 2014. V. 24. P. 901–924.
  44. Seo D.J., Nguyen D.M., Song Y.S., Jung W.J. // J. Microbiol. Biotechnol. 2012. V. 22. № 3. P. 407–415.
  45. Pleban S., Ingel F., Che I. // European J. Plant Pathol. 1995. V. 101. P. 665–672.
  46. Thomas P., Shaik S.P. // Microb. Ecol. 2020. V. 79. № 4. P. 910–924.
  47. García-Suárez R., Verduzco-Rosas L.A., Ibarra J.E. // FEMS Microbiol. Ecol. 2021. V. 97. № 7. Art. fiab080. https://doi.org/10.1093/femsec/fiab080
  48. Praça L.B., Menezes Mendes Gomes A.C., Cabral G., Martins É.S., Sujii E.R., Monnerat R.G. // Bt Research. 2012. V. 3. № 3. P. 11–19.
  49. Каменек Л.К., Сатарова Т.А., Каменек Д.В., Терпиловский М.А. // Сельскохозяйственная биол. 2011. № 1. С. 112–117.
  50. Mirsam H., Suriani A.M., Azrai M., Efendi R., Muliadi A., Sembiring H. et al. // Heliyon. 2022. V. 8. № 12. Art. e11960. https://doi.org/10.1016/j.heliyon.2022.e11960
  51. Goryluk L.A., Rekosz-Burlaga H., B£aszczyk M. // Polish J. Microbiol. 2009. V. 58. № 4. P. 355–361.
  52. Etesami H., Alikhani H.A. // Eur. J. Plant Pathol. 2017. V. 147. P. 7–14.
  53. Гришечкина С.Д. // Сельскохозяйственная биол. 2015. Т. 50. № 5. С. 685–693.
  54. Glassner H., Zchori-Fein E., Compant S., Sessitsch A., Katzir N., Portnoy V. et al. // FEMS Microbiol. Ecol. 2015. V. 91. № 7. Art. fiv074. https://doi.org/10.1093/femsec/fiv074
  55. Ouhaibi-Ben Abdeljalil N., Renault D., Gerbore J., Vallance J., Rey P., Daami-Remad M. // J. Microb. Biochem. Technol. 2016. V. 8. P. 110–119.
  56. Zhou H., Ren Z.H., Zu X., Yu X.Y., Zhu H.J., Li X.J. et al. // Front. Microbiol. 2021. V. 12. Art. 684888. https://doi.org/10.3389/fmicb.2021.684888
  57. Nisa S., Shoukat M., Bibi Y., Al Ayoubi S., Shah W., Masood S. et al. //Saudi J. Biol Sci. 2022. V. 29. № 1. P. 287–295.
  58. Vinayarani G., Prakash H.S. // Plant Pathol. J. 2018. V. 34. № 3. P. 218–235. https://doi.org/10.5423/PPJ.OA.11.2017.0225
  59. Kim P.I., Bai H., Chae H., Ching S., Kim Y., Park R. et al. // J. Appl. Microbiol. 2004. V. 97. P. 942–949.
  60. Kamenyok L.K., Levina T.A., Teriokhin D.A., Minacheva L.D. // Biotechnology in Russia. 2005. № 1. P. 81–93.
  61. Islam M.N., Ali M.S., Choi S.J., Hyun J.W., Baek K.H. // Plant Pathol. J. 2019. V. 35. № 5. P. 486–497.
  62. Roy S., Yasmin S., Ghosh S., Bhattacharya S., Banerjee D. // Microbiol. Insights. 2016. V. 9. P. 1–7.
  63. Lopes R.B.M., Costa L.E.O., Vanetti M.C.D., Araujo E.F., Queiroz M.V. // Curr Microbiol 2015. V. 71. P. 509–516.
  64. Anandan K., Vittal R.R. // Microb. Pathog. 2019. V. 132. P. 230–242.
  65. Hollensteiner J., Wemheuer F., Harting R., Kolarzyk A.M., Diaz Valerio S.M., Poehlein A. et al. // Front. Microbiol. 2017. V. 7. Art. 2171. https://doi.org/10.3389/fmicb.2016.02171
  66. Fatima R., Mahmood T., Moosa A., Aslam M.N., Shakeel M.T., Maqsood A. et al. // Pest Manag. Sci. 2023. V. 79. № 1. P. 336–348.
  67. Adeleke B.S., Ayangbenro A.S., Babalola O.O. // Plants (Basel). 2021. V. 10. № 9. Art. 1776.
  68. Mercado V., Olmos J. // Probiotics & Antimicro. Prot. 2022. V. 14. P. 1151–1169.
  69. Favret M.E., Youston A.A. // J. Invert. Pathol. 1989. V. 53. P. 206–216.
  70. Cherif A., Rezgui W., Raddadi N., Daffonchio D., Boudabous A. // Microbiol Res. 2008. V. 163. № 6. P. 684–692.
  71. Paik H.D., Bae S.S., Park S.H., Pan J.G. // J. Industrial Microbiol. Biotechnol. 1997. V. 19. P. 294–298.
  72. Nazari M., Smith D.L. // Front. Plant Sci. 2020. V. 11. Art. 916. https://doi.org/10.3389/fpls.2020.00916
  73. Lyu D., Backer R., Subramanian S., Smith D.L. // Front. Plant Sci. 2020. V. 11. Art. 634.
  74. Martínez-Zavala S.A., Barboza-Pérez U.E., Hernández-Guzmán G., Bideshi D.K., Barboza-Corona J.E. // Front. Microbiol. 2020. V. 10. Art. 3032. https://doi.org/10.3389/fmicb.2019.03032
  75. Aktuganov G.E., Safina V.R., Galimzianova N.F., Gilvanova E.A., Kuzmina L.Yu., Melentiev A.I. et al. // World J. Microbiol. Biotechnol. 2022. V. 38. Art. 167. https://doi.org/10.1007/s11274-022-03359-5
  76. Muhammad A., Nisa R.M., Aris T.W. // Research J. Microbiol. 2014. V. 9. P. 265–277.
  77. Achari G.A., Ramesh R. // PNAS USA. India Sect. B Boil. Sci. 2018. V. 89. P. 585–593.
  78. Tanuja R., Bisht S.C., Mishra P.K. // European J. Soil Biol. 2013. V. 56. P. 56–64.
  79. Mishra P.K., Bisht S.C., Ruwari P., Subbanna A.R.N.S., Bisht J.K., Bhatt J.Ch. et al. // Ann. Microbiol. 2017. V. 67. P. 143–155.
  80. Bai Y., Zhou X., Smith D.L. // Crop Science. 2003. V. 43. № 5. Art. 1774.https://doi.org/10.2135/cropsci2003.1774
  81. Selvakumar G., Kundu S., Gupta A.D., Shouche Y.S., Gupta H.S. // Curr. Microbiol. 2008. V. 56. P. 134–139.
  82. Laranjeira S.S., Alves I.G., Marques G. // Curr. Microbiol. 2022. V. 79. № 9. Art. 277. https://doi.org/10.1007/s00284-022-02942-1
  83. Li Y., Wang C., Ge L., Hu C., Wu G., Sun Y., Song L. et al. // Plants (Basel). 2022. V. 11. № 9. Art. 1212. https://doi.org/10.1007/s00284-022-02942-1
  84. Yung W.J., Mabood F., Souleimanov A., Park R.D., Smith D.L. // Microbiol. Res. 2008. V. 163. № 3. P. 345–349.
  85. Djenane Z., Nateche F., Amziane M., Gomis-Cebolla J., El-Aichar F., Khorf H. et al. // Toxins (Basel). 2017. V. 9. № 4. Art. 139. https://doi.org/10.3390/toxins9040139
  86. Belousova M.E., Malovichko Y.V., Shikov A.E., Nizhnikov A.A., Antonets K.S. // Toxins (Basel). 2021. V. 13. № 5. Art. 355. https://doi.org/10.3390/toxins13050355
  87. Wang X., Xue Y., Han M., Bu Y., Liu C. // Chemosphere. 2014. V. 108. P. 258–264.
  88. Chen Y., Pan L., Ren M., Li J., Guan X., Tao J. // GM Crops Food. 2022. V. 13. № 1. P. 1–14.
  89. Sun C., Geng L., Wang M., Shao G., Liu Y., Shu C. et al. // Microbiology open. 2017. V. 6. № 1. Art. e00404. https://doi.org/10.1016/j.jip.2015.02.005
  90. Yang S., Liu X., Xu X., Sun H., Li F., Hao C. et al. // Plants (Basel). 2022. V. 11. № 17. Art. 2218. https://doi.org/10.3390/plants11172218
  91. Kırtel O., Versluys M., Van den Ende W., Öner E.T. // Quorum Sensing. Molecular Mechanism and Biotechnological Application. 2019. / Ed. G. Tommonaro. Chap: Academic Press, 2019. P. 127–149.
  92. Park S.J., Park S.Y., Ryu C.M., Park S.H., Lee J.K. // J. Microbiol. Biotechnol. 2008. V. 18. № 9. P. 1518–1521.
  93. Cho H.S., Park S.Y., Ryu C.M., Kim J.F., Kim J.G., Park S.H. // FEMS Microbiol. Ecol. 2007. V. 60. P. 14–23.
  94. Kumar A., Singh R., Yadav A., Giri D.D., Singh P.K., Pandey K.D. // Biotech. 2016. V. 6. № 1. Art. 60.https://doi.org/10.1007/s13205-016-0393-y
  95. Batista B.D., Dourado M.N., Figueredo E.F., Hortencio R.O., Marques J.P.R., Piotto F.A. et al. // Arch. Microbiol. 2021. V. 203. № 7. P. 3869–3882.
  96. Armada E., Probanza A., Roldán A., Azcón R. // J. Plant Physiol. 2016. V. 192. P. 1–12.
  97. Ali M.M., Vora D. // Int. Res. J. Envir. Sci. 2014. V. 3. № 9. P. 27–31.
  98. Ismail M.A., Amin M.A., Eid A.M., Hassan S.E., Mahgoub H.A.M., Lashin I. et al. // Cells. 2021. V. 10. № 5. Art. 1059.https://doi.org/10.3390/cells10051059
  99. Vyas P., Kaur R. // J. Soil Sci. Plant Nutr. 2019. V. 19. P. 290–298.
  100. Ahumada G.D., Gómez-Álvarez E.M., Dell’Acqua M., Bertani I., Venturi V., Perata P. et al. // Front. Plant Sci. 2022. V. 13. Art. 908349. https://doi.org/10.3389/fpls.2022.908349
  101. Figueredo E.F., Cruz T.A.D., Almeida J.R., Batista B.D., Marcon J., Andrade P.A.M. et al. // Microbiol. Res. 2023. V. 266. Art. 127218.https://doi.org/10.1016/j.micres.2022.127218
  102. Vidal-Quist J.C., Rogers H.J., Mahenthiralingam E., Berry C. // FEMS Microbiol. Ecol. 2013. V. 86. P. 474–489.
  103. Azizoglu U. // Curr. Microbiol. 2019. V. 76. P. 1379–1385.
  104. Sharma N., Saharan B.S. // Microbiol. Res. J. Int. 2016. V. 16. P. 1–10.
  105. Dubey A., Saiyam D., Kumar A., Hashem A., Abd_Allah E.F., Khan M.L. // Int. J. Environ. Res. Public Health. 2021. V. 18. Art. 931. https://doi.org/10.3390/ijerph18030931
  106. Ali B., Hafeez A., Ahmad S., Javed M.A., Sumaira, Afridi M.S. et al. // Front. Plant Sci. 2022. V. 13. Art. 921668. https://doi.org/10.3389/fpls.2022.921668
  107. de Almeida J.R., Bonatelli M.L., Batista B.D., Teixeira-Silva N.S., Mondin M., Dos Santos R.C. et al. // Environ. Microbiol. Rep. 2021. V. 13. № 6. P. 812–821.
  108. Chaouachi M., Marzouk T., Jallouli S., Elkahoui S., Gentzbittel L., Ben C. et al. // Postharvest Biol. Technol. 2021. V. 172. Art. 111389.https://doi.org/10.1016/j.postharvbio.2020.111389
  109. Huang C.J., Tsay J.F., Chang S.Y., Yang H.P., Wu W.S., Chen C.Y. // Pest Manag. Sci. 2012. V. 68. № 9. Art. 1306–10. https://doi.org/10.1002/ps.3301
  110. Timmusk S., Abd El-Daim I.A., Copolovici L., Tanilas T., Kännaste A., Behers L. et al. // PLoS One. 2014. V. 9. № 5. Art. e96086. https://doi.org/10.1371/journal.pone.0096086
  111. Vardharajula S., Ali S.Z., Grover M., Reddy G., Bandi V. // J. Plant Interactions. 2011. V. 6. № 1. P. 1–14.
  112. Babu A.G., Kim J.-D., Oh B.-T. // J. Hazardous Materials. 2013. V. 250–251. P. 477–483.
  113. Dolphen R., Thiravetyan P. // Chemosphere. 2019. V. 223. P. 448–454.
  114. Akhtar N., Ilyas N., Yasmin H., Sayyed R.Z., Hasnain Z., Elsayed E.A. et al. // Molecules. 2021. V. 26. Art. 1569. https://doi.org/10.3390/molecules26061569
  115. Huang H., Zhao Y., Fan L., Jin Q., Yang G., Xu Z. // Chemosphere. 2020. V. 260. Art. 127614. https://doi.org/10.1016/j.chemosphere.2020.127614
  116. Shah A.A., Bibi F., Hussain I., Yasin N.A., Akram W., Tahir M.S. et al. // Plants (Basel). 2020. V. 9. № 11. Art. 1512. https://doi.org/10.3390/plants9111512
  117. Zheng L.P., Zou T., Ma Y.J., Wang J.W., Zhang Y.Q. // Molecules. 2021. V. 21. № 2. Art. 174. https://doi.org/10.3390/molecules21020174
  118. Autarmat S., Treesubsuntorn C., Thiravetyan P. // Envir. Exp. Botany. 2022. V. 194. Art. 104761. https://doi.org/10.1016/j.envexpbot.2021.104761
  119. Khaksar G., Treesubsuntorn C., Thiravetyan P. // Environ. Exp. Bot. 2016. V. 126. P. 10–20.
  120. Daudzai Z., Treesubsuntorn C., Thiravetyan P. // Ecotoxicology and Environmental Safety. 2018. V. 164. P. 50–60.
  121. Suyamud B., Thiravetyan P., Panyapinyopol B., Inthorn D. // Ecotoxicology and Environmental Safety. 2018. V. 157. P. 318–326.
  122. Fan J., Yang G., Zhao H., Shi G., Geng Y., Hou T. et al. // J. Gen. Appl. Microbiol. 2012. V. 58. № 4. P. 263–271.
  123. Sunkar S., Nachiyar C.V. // Asian Pac. J. Trop. Biomed. 2012. V. 2. № 12. P. 953–959.
  124. Sayed A.M.M., Kim S., Behle R.W. // Biocontrol Sci. and Technol. 2017. V. 27. P. 1308–1326
  125. Khan M.A., Asaf S., Khan A.L., Jan R., Kang S.M., Kim K.M. et al. // BMC Microbiol 2020. V. 20. Art. 175. https://doi.org/10.1186/s12866-020-01822-7
  126. Araújo R.C., Rodrigues F.A., Nadal M.C., Ribeiro M.S., Antônio C.A.C., Rodrigues V.A. et al. // Microbiol. Res. 2021. V. 248. Art. 126750. https://doi.org/10.1016/j.micres.2021.126750
  127. Damodaran T., Rai R.B., Jha S.K., Kannan R., Pandey B.K., Sah Vijayalaxmi et al. // J. Plant Interactions. 2014. V. 9. № 1. P. 577–584.
  128. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J. et al. // Microbiol. Mol. Biol. Rev. 1998. V. 62. P. 775–806.
  129. Chakrabarty S., Chakraborty P., Islam T., Islam A.K.M.A., Datta J., Bhattacharjee T. et al. In: Bacilli and Agrobiotechnology. / Eds. M.T. Islam, M. Rahman, P. Pandey, C.K. Jha, A. Aeron. Cham: Springer, 2022. 397 p.
  130. Crickmore N., Berry C., Panneerselvam S., Mishra R., Connor T.R., Bonning B.C. // J. Invertebr. Pathol. 2020. Art. 107438. https://doi.org/10.1016/j.jip.2020.107438
  131. Palma L., Muñoz D., Berry C., Murillo J., Caballero P. // Toxins (Basel). 2014. V. 6. № 12. P. 3296–3325.
  132. Chattopadhyay P., Banerjee G. // Biotech. 2018. V. 8. № 4. Art. 201.https://doi.org/10.1007/s13205-018-1223-1
  133. Liu X., Ruan L., Peng D., Li L., Sun M., Yu Z. // Toxins. 2014. V. 6. P. 2229–2238.
  134. Soonsanga S., Luxananil P., Promdonkoy B. // Biotechnol. Lett. 2020. V. 42. № 4. P. 625–632.
  135. Hu H.J., Chen Y.L., Wang Y.F., Tang Y.Y., Chen S.L., Yan S.Z. // Plant Disease. 2017. V. 101. № 3. P. 448–455.
  136. Maulidia V., Soesanto L., Syamsuddin, Khairan K., Hamaguchi T., Hasegawa K. et al. // Biodiversitas. 2020. V. 21. P. 5270–5275.
  137. Liang Z., Ali Q., Wang Y., Mu G., Kan X., Ren Y. et al. // Int. J. Mol. Sci. 2022. V. 23. № 15. Art. 8189.https://doi.org/10.3390/ijms23158189
  138. Aballay E., Prodan S., Correa P., Allende J. // Crop Protect. 2020. V. 131. Art. 105103.https://doi.org/10.3390/ijms23158189
  139. Yu Z., Xiong J., Zhou Q., Luo H., Hu S., Xia L. et al. // J. Invertebr. Pathol. 2015. V. 125. P. 73–80.
  140. Huang T., Lin Q., Qian X., Zheng Y., Yao J., Wu H. et al. // Phytopathology. 2018. V. 108. P. 44–51.
  141. Schnepf H.E., Whiteley H.R. // PNAS. USA. 1981. V. 78. № 5. P. 2893–2897.
  142. Peng Q., Yu Q., Song F. // Appl. Microbiol. Biotechnol. 2019. V. 103. № 4. P. 1617–1626.
  143. Zhou X.Y., Li H., Liu Y.M., Hao J.Ch., Liu H.F., Lu X.Z. // Adsorption Sci. Technol. 2018. V. 36(5–6). P. 1233–1245.
  144. Reinders J.D., Reinders E.E., Robinson E.A., Moar W.J., Price P.A., Head G.P. et al. // PLoS One. 2022. V. 17. № 5. Art. e0268902. https://doi.org/10.1371/journal.pone.0268902
  145. Maghari B.M., Ardekani A.M. // J. Med. Biotechnol. 2011. V. 3. № 3. P. 109–117.
  146. Jost P., Shurley D., Culpepper S., Roberts P., Nichols R., Reeves J. et al. // Agron. J. 2008. V. 100. № 1. P. 42–51.
  147. Tabashnik B.E., Carrière Y. // J. Econ. Entomol. 2020. V. 113. № 2. P. 553–561.
  148. Ni M., Ma W., Wang X., Gao M., Dai Y., Wei X. et al. // Plant Biotechnol. J. 2017. V. 15. P. 1204–1213.
  149. de Maagd R.A., van der Klei H., Bakker P.L., Stiekema W.J., Bosch D. // Appl. Environ. Microbiol. 1996. V. 62. P. 1537–1543.
  150. Pardo-Lopez L., Mudoz-Garay C., Porta H. // Peptides. 2009. V. 30. № 3. P. 589–595.
  151. Wu D., Aronson A.I. // J. Biol. Chem. 1992. V. 267. P. 2311–2327.
  152. Rajamohan F., Alzate O., Cotrill J.A., Curtiss A., Dean D.H. // PNAS. USA. 1996. V. 93. P. 14338–14343.
  153. Jamoussi K., Sellami S., Abdelkefi-Mesrati L., Givaudan A., Jaoua S. // Mol. Biotechnol. 2009. V. 43. № 2. P. 97–103.
  154. Tounsi S., Aoun A.E., Blight M., Rebaî A., Jaoua S. // J. Invertebr. Pathol. 2006. V. 91. № 2. P. 131–135.
  155. Yan F., Cheng X., Ding X., Yao T., Chen H., Li W. et al. // Curr. Microbiol. 2014. V. 68. P. 604–609.
  156. Sun Y., Fu Z., He X., Yuan C., Ding X., Xia L. // J. Invertebr. Pathol. 2016. V. 135. P. 60–62.
  157. Gawron-Burke C., Baum J.A. // Genet. Eng. (N.Y.). 1991. V. 13. P. 237–263.
  158. Azizoglu U., Jouzani G.S., Yilmaz N., Baz E., Ozkok D. // Sci. Total Environ. 2020. V. 734. Art. 139169. https://doi.org/10.1016/j.scitotenv.2020.139169
  159. Wozniak C.A., McClung G., Gagliardi J., Degal M., Matthews K. In: Regulation of Agricultural Biotechnology: The United States and Canada. Chapter 4. Eds. C.A.Wozniak, A. McHughen. US Government. 2012. P. 57.
  160. Hernandez-Rodriguez C.S., de Escudero I.R., Asensio A.C., Ferre J., Caballero P. // Biological Control. 2013. V. 66. P. 159–165.
  161. Saleem F., Shakoori A.R. // Toxins (Basel). 2017. V. 9. № 11. Art. 358.
  162. Roh J.Y., Kim Y.S., Wang Y., Liu Q., Tao X., Xu H.G. et al. // J. Asia-Pacific Entomology. 2010. V. 13. № 1. P. 61–64.
  163. Nambiar P.T.C., MaS W., Aiyer V.N. // Appl. Environ. Microbio1. 1990. V. 56. P. 2866–2869.
  164. Skøt L., Harrison S.P., Nath A., Mytton L.R., Clifford B.C. // Plant and Soil. 1990. V. 127. P. 285–295.
  165. Obukowicz M.G., Perlak F.J., Kusano K. K., Mayer E.J., Watrud L.S. // Gene. 1986. V. 45. P. 327–331.
  166. Li Y., Wu Ch., Xing Zh., Gao B., Zhang L. // Biotechnology & Biotechnological Equipment. 2017. V. 31. № 6. P. 1167–1172.
  167. Maksimov I.V., Blagova D.K., Veselova S.V., Sorokan A.V., Burkhanova G.F., Cherepanova E.A. et al. // Biological Control. 2020. V. 144. Art. 104242. https://doi.org/10.1016/j.biocontrol.2020.104242
  168. Sorokan A., Benkovskaya G., Burkhanova G., Blagova D., Maksimov I. // Plants. 2020. V. 9. Art. 1115. https://doi.org/10.3390/plants9091115
  169. Price D.R., Gatehouse J.A. // Trends in Biotechnol. 2008. V. 26. № 7. P. 393–400.
  170. Gong L., Kang Sh., Zhou J., Sun D., Guo L., Qin J. et al. // Toxins (Basel). 2020. V. 12(2). P. 76. https://doi.org/10.3390/toxins12020076
  171. Park M.G., Kim W.J., Choi J.Y., Kim J.H., Park D.H., Kim J.Y. et al. // Pest Manag. Sci. 2020. V. 76. P. 1699–1704.
  172. Jiang Y.X., Chen J.Z., Li M.W., Zha B.H., Huang P.R., Chu X.M. et al. // Int. J. Mol. Sci. 2021. V. 23. № 1. Art. 444. https://doi.org/10.3390/ijms23010444
  173. Azizoglu U., Yilmaz N., Simsek O., Ibal J.C., Tagele S.B., Shin J.-H. // Biotech. 2021. V. 11. Art. 382. https://doi.org/10.1007/s13205-021-02941-2

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Р.М. Хайруллин, А.В. Сорокань, В.Ф. Габдрахманова, И.В. Максимов