Эффективность различных ДНК-полимераз для амплификации длинных последовательностей с геномной ДНК и кДНК культурного картофеля

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Амплификация длинных фрагментов со сложных матриц, таких как геномная ДНК эукариот, является сложной задачей для большинства ДНК-полимераз. В работе проведено сравнение эффективности 6 вариантов ДНК-полимераз для амплификации с геномной ДНК картофеля Solanum tuberosum полноразмерных последовательностей генов, кодирующих факторы инициации трансляции семейства eIF4E, а также для синтеза фрагментов генома вируса Y картофеля с кДНК растений картофеля, зараженных этим вирусом. Было установлено, что эффективность амплификации различными ДНК-полимеразами в целом падала с увеличением длины ампликонов. Наибольшую эффективность синтеза длинных фрагментов продемонстрировали полимеразы LongAmp и Platinum SuperFi II, которые позволяли с высокой эффективностью синтезировать ПЦР-продукты длиной более 10 тысяч пар оснований, наименьшую – полимераза Encyclo. Ни одна из ДНК-полимераз не обеспечила эффективную амплификацию всех исследованных фрагментов ДНК. В то же время, любой из исследованных фрагментов ДНК мог быть амплифицирован с помощью не менее чем одного варианта ДНК-полимеразы. Таким образом, выбор ДНК-полимеразы имел ключевое значение для эффективности синтеза определенного ПЦР-продукта.

Об авторах

А. Д. Антипов

Всероссийский научно-исследовательский институт
сельскохозяйственной биотехнологии

Email: stresslab@yandex.ru
Россия, 127550, Москва

Н. Е. Злобин

Всероссийский научно-исследовательский институт
сельскохозяйственной биотехнологии

Автор, ответственный за переписку.
Email: stresslab@yandex.ru
Россия, 127550, Москва

Список литературы

  1. Karunanathie H., Kee P.S., Ng S.F., Kennedy M.A., Chua E.W. // Biochimie. 2022. V. 197. P. 130–143. https://doi.org/10.1016/j.biochi.2022.02.009
  2. Knierim E., Lucke B., Schwarz J.M., Schuelke M., Seelow D. // PloS One. 2011. V. 6. № 11. P. e28240. https://doi.org/10.1371/journal.pone.0028240
  3. Qiao W., Yang Y., Sebra R., Mendiratta G., Gaedigk A., Desnick R.J., Scott S.A. // Hum. Mutat. 2016. V. 37. № 3. P. 315–323. https://doi.org/10.1002/humu.22936
  4. Martijn J., Lind A.E., Schön M.E., Spiertz I., Juzokaite L., Bunikis I. et al. // Environ. Microbiol. 2019. V. 21. № 7. P. 2485–2498. https://doi.org/10.1111/1462-2920.14636
  5. Karst S.M., Ziels R.M., Kirkegaard R.H., Sørensen E.A., McDonald D., Zhu Q., Knight R., Albertsen, M. // Nat. Methods. 2021. V. 18. № 2. P. 165–169. https://doi.org/10.1038/s41592-020-01041-y
  6. Brait N., Külekçi B., Goerzer I. // BMC Genomics. 2022. V. 23. № 1. P. 1–16. https://doi.org/10.1186/s12864-021-08272-z
  7. Briscoe A.G., Goodacre S., Masta S.E., Taylor M.I., Arnedo M.A., Penney D., Kenny J., Creer S. // PLoS One. 2013. V. 8. № 5. P. e62404. https://doi.org/10.1371/journal.pone.0062404
  8. Jia H., Guo Y., Zhao W., Wang K. // Sci. Rep. 2014. V. 4. № 1. P. 1–8. https://doi.org/10.1038/srep05737
  9. Ozaki Y., Suzuki S., Shigenari A., Okudaira Y., Kikkawa E., Oka A. et al. // Tissue Antigens. 2014. V. 83. № 1. P. 10–16. https://doi.org/10.1111/tan.12258
  10. Deiner K., Renshaw M.A., Li Y., Olds B.P., Lodge D.M., Pfrender M.E. // Methods Ecol. Evol. 2017. V. 8. № 12. P. 1888–1898. https://doi.org/10.1111/2041-210X.12836
  11. Togi S., Ura H., Niida Y. Optimization and Validation of Multimodular // J. Mol. Diagn. 2021. V. 23. № 4. P. 424–446. https://doi.org/10.1016/j.jmoldx.2020.12.009
  12. Günther S., Sommer G., Von Breunig F., Iwanska A., Kalinina T., Sterneck M., Will H. // J. Clin. Microbiol. 1998. V. 36. № 2. P. 531–538. https://doi.org/10.1128/JCM.36.2.531-538.1998
  13. Trémeaux P., Caporossi A., Ramière C., Santoni E., Tarbouriech N., Thélu M.A. et al. // Clin. Microbiol. Infect. 2016. V. 22. № 5. P. 460-e1. https://doi.org/10.1016/j.cmi.2016.01.015
  14. Joffret M.L., Polston P.M., Razafindratsimandresy R., Bessaud M., Heraud J.M., Delpeyroux F. // Front. Microbiol. 2018. V. 9. P. 2339. https://doi.org/10.3389/fmicb.2018.02339
  15. Isaacs S.R., Kim K.W., Cheng J.X., Bull R.A., Stelzer-Braid S., Luciani F. et al. // Sci. Rep. 2018. V. 8. № 1. P. 1–9. https://doi.org/10.1038/s41598-018-30322-y
  16. Shagin D.A., Lukyanov K.A., Vagner L.L., Matz M.V. // Nucleic Acids Res. 1999. V. 27. № 18. P. e23-i. https://doi.org/10.1093/nar/27.18.e23-i
  17. Zhao Z., Xie X., Liu W., Huang J., Tan J., Yu H., Zong W. et al. // Mol. Plant. 2022. V. 15. № 4. P. 620–629. https://doi.org/10.1016/j.molp.2021.12.018
  18. Ignatov K.B., Kramarov V.M. //Biochemistry (Moscow). 2009. V. 74. № 5. P. 557–561. https://doi.org/10.1134/S0006297909050113
  19. Cheng S., Fockler C., Barnes W.M., Higuchi R. // PNAS. 1994. V. 91. № 12. P. 5695–5699. https://doi.org/10.1073/pnas.91.12.5695
  20. Waggott W. // Humana Press. 1998. V. 16. P. 81–91. https://doi.org/10.1385/0-89603-499-2:81
  21. Kasajima I. // Trends Res. 2018. V. 1. P. 1–2. https://doi.org/10.15761/TR.1000115
  22. Singh R.P., Singh M., King R.R. // J. Virol. Methods. 1998. V. 74. № 2. P. 231–235. https://doi.org/10.1016/S0166-0934(98)00092-5
  23. Singh R.P., Nie X., Singh M., Coffin R., Duplessis P. // J. Virol. Methods. 2002. V. 99. № 1–2. P. 123–131. https://doi.org/10.1016/S0166-0934(01)00391-3
  24. Valcarcel J., Reilly K., Gaffney M., O’Brien N.M. // Potato Res. 2015. V. 58. № 3. P. 221–244. https://doi.org/10.1007/s11540-015-9299-z
  25. Анисимова И.Н., Алпатьева Н.В., Абдуллаев Р.А., Карабицина Ю.И., Кузнецова Е.Б. Скрининг генетических ресурсов растений с использованием ДНК-маркеров: основные принципы, выделение ДНК, постановка ПЦР, электрофорез в агарозном геле. / Ред. Радченко Е.Е.: Методические указания ВИР. СПб: ВИР, 2018. 47 с. https://doi.org/10.30901/978-5-905954-81-8
  26. Moury B., Charron C., Janzac B., Simon V., Gallois J.L., Palloix A., Caranta C. // Infect. Genet. Evol. 2014. V. 27. P. 472–480. https://doi.org/10.1016/j.meegid.2013.11.024
  27. Lucioli A., Tavazza R., Baima S., Fatyol K., Burgyan J., Tavazza M. // Front. Microbiol. 2022. V. 13. https://doi.org/10.3389/fmicb.2022.873930
  28. Quenouille J., Vassilakos N., Moury B. // Plant Pathol. 2013. V. 14. № 5. P. 439–452. https://doi.org/10.1111/mpp.12024
  29. Suzuki Y., Sugano S. // Genomics Protocols. 2001. V. 175. P. 143–153. https://doi.org/10.1385/1-59259-235-X:143
  30. Ling A.K., Munro M., Chaudhary N., Li C., Berru M., Wu B., Durocher D., Martin A. // EMBO Rep. 2020. V. 21. № 8. P. e49823. https://doi.org/10.15252/embr.201949823
  31. Xie X., Muruato A., Lokugamage K.G., Narayanan K., Zhang X., Zou J., Liu J. et al. // Cell Host Microbe. 2020. V. 27. № 5. P. 841–848. https://doi.org/10.1016/j.chom.2020.04.004
  32. Sannier G., Dube M., Dufour C., Richard C., Brassard N., Delgado G.G., Pagliuzza A., Baxter A.E., Niessl J., Brunet-Ratnasingham E., Charlebois R., Routy B., Routy J.P., Fromentin R., Chomont N., Kaufmann D.E. // Cell Rep. 2021. V. 36. № 9. https://doi.org/10.1016/j.celrep.2021.109643
  33. Keraite I., Becker P., Canevazzi D., Frias-López C., Dabad M., Tonda-Hernandez R., Paramonov I., Ingham M.J., Brun-Heath I., Leno J., Abulí A., Garcia-Arumí E., Heath S.C., Gut M., Gut I.G. // Nat. Commun. 2022. V. 13. № 1. P. 1–12. https://doi.org/10.1038/s41467-022-33530-3
  34. Maniego J., Pesko B., Habershon-Butcher J., Hincks P., Taylor P., Tozaki T., Ohnuma A., Stewart G., Proudman C., Ryder E. // Drug Testing and Analysis. 2022. V. 14. № 8. P. 1429–1437. https://doi.org/10.1002/dta.3267
  35. Tasca F., Brescia M., Wang Q., Liu J., Janssen J.M., Szuhai K., Gonçalves M.A. // Nucleic Acids Res. 2022. V. 50. № 13. P. 7761–7782. https://doi.org/10.1093/nar/gkac567
  36. Vincendeau E., Wei W., Zhang X., Planchais C., Yu W., Lenden-Hasse H., Cokelaer T., da Fonseca J.P., Mouquet H., Adams D.J., Alt F.W., Jackson S.P., Balmus G., Lescale C., Deriano L. // Nat. Commun. 2022. V. 13. № 1. P. 1–16. https://doi.org/10.1038/s41467-022-31287-3

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (672KB)
3.

Скачать (601KB)

© А.Д. Антипов, Н.Е. Злобин, 2023