Extracellular Vesicles of Bacteria Mediate Intercellular Communication: Practical Applications and Biosafety (Review)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Extracellular vesicles, secreted by bacterial cells, are the focus of close attention of researchers. They are enriched with bioactive molecules, mediate the intercellular communication of micro- and macroorganisms, participate in the adaptation of bacteria to stressful conditions, reprogramming target cells, modulating immunoreactivity in higher organisms, changing the structure of microbial communities and ecosystems. The unique properties of bacterial extracellular vesicles (BEVs) open up broad prospects for their practical application – in clinical medicine, agriculture, biotechnology and ecology as diagnostic markers, vaccines, new biological products and means of their delivery. However, to implement the practical applications, a number of problems need to be solved. This review focuses on the ambiguous role of BEVs in the regulation of living systems, the problem of assessing the safety of BEVs and approaches to its solution related to innovative technologies.

作者简介

V. Chernov

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

A. Mouzykantov

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

编辑信件的主要联系方式.
Email: muzaleksei@mail.ru
Russia, 420111, Kazan

N. Baranova

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

O. Chernova

Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences

Email: muzaleksei@mail.ru
Russia, 420111, Kazan

参考

  1. Woith E., Fuhrmann G., Melzig M.F. // Int. J. Mol. Sci. 2019. V. 20. № 22. P. 5695.https://doi.org/10.3390/ijms20225695
  2. Bishop D., Work E.J.B.J. // Biochem. J. 1965. V. 96. № 2. P. 567–576. https://doi.org/10.1042/bj0960567
  3. Knox K., Cullen J., Work E.J.B.J. // Biochem. J. 1967. V. 103. № 1. P. 192–201. https://doi.org/10.1042/bj1030192
  4. Bladen H.A., Waters J.F. // J. Bacteriol. 1963. V. 86. № 6. P. 1339–1344. https://doi.org/10.1128/jb.86.6.1339-1344.1963
  5. Avila-Calderón E.D., Ruiz-Palma M.D.S., Aguilera-Arreola M.G., Velázquez-Guadarrama N., Ruiz E.A., Gomez-Lunar Z., et al. // Front Microbiol. 2021. V. 12. P. 557902. https://doi.org/10.3389/fmicb.2021.557902
  6. Briaud P., Carroll R.K. // Infect. Immun. 2020. V. 88. e00433-20. https://doi.org/10.1128/IAI.00433-20
  7. Tarashi S., Zamani M.S., Omrani M.D., Fateh A., Moshiri A., Saedisomeolia A. et al. // J. Immunol. Res. 2022. V. 2022. P. 8092170. https://doi.org/10.1155/2022/8092170
  8. Xie J., Li Q., Haesebrouck F., Van Hoecke L., Vandenbroucke R.E. // Trends Biotechnol. 2022. V. 40. №. 10. P. 1173–1194 https://doi.org/10.1016/j.tibtech.2022.03.005
  9. Chernov V.M., Mouzykantov A.A., Baranova N.B., Medvedeva E.S., Grygorieva T.Y., Trushin M.V. et al. // J. Proteomics. 2014. V. 110. P. 117–28. https://doi.org/10.1016/j.jprot.2014.07.020
  10. Gaurivaud P., Ganter S., Villard A., Manso-Silvan L., Chevret D., Boulé C. et al. // PLoS One. 2018. V. 13. № 11. e0208160. https://doi.org/10.1371/journal.pone.0208160
  11. de Souza L.F.L., Campbell G., Arthuso G.G.S., Gonzaga N.F., Alexandrino C.R., Assao V.S. et al. // Braz. J. Microbiol. 2022. V. 53. № 2. P. 1081–1084. https://doi.org/10.1007/s42770-022-00726-0
  12. Razin S., Hayflick L. // Biologicals. 2010. V. 38. № 2. P. 183–190. https://doi.org/10.1016/j.biologicals.2009.11.008
  13. Toyofuku M., Nomura N., Eberl L. // Nat. Rev. Microbiol. 2019. V. 17. №. 1. P. 13–24. https://doi.org/10.1038/s41579-018-0112-2
  14. Mozaheb N., Mingeot-Leclercq M.-P. // Front. Microbiol. 2020. V. 11. P. 600221. https://doi.org/10.3389/fmicb.2020.600221
  15. Potter M., Hanson C., Anderson A.J., Vargis E., Britt D.W. // Sci. Rep. 2020. V. 10. № 1. P. 21289. https://doi.org/10.1038/s41598-020-78357-4
  16. Stanton B.A. // Genes (Basel). 2021. V. 12. № 7. P. 1010. https://doi.org/10.3390/genes12071010
  17. Koeppen K., Hampton T.H., Jarek M., Scharfe M., Gerber S.A., Mielcarz D.W. et al. // PLoS Pathog. 2016. V. 12. № 6. e1005672. https://doi.org/10.1371/journal.ppat.1005672
  18. Pita T., Feliciano J.R., Leitão J.H. // Int. J. Mol. Sci. 2020. V. 21. № 24. P. 9634. https://doi.org/10.3390/ijms21249634
  19. Schatz D., Schleyer G., Saltvedt M.R., Sandaa R.A., Feldmesser E., Vardi A. // ISME J. 2021. V. 15. № 12. P. 3714–3721. https://doi.org/10.1038/s41396-021-01018-5
  20. Majdalani N., Vanderpool C.K., Gottesman S. // Crit. Rev. Biochem. Mol. Biol. 2005. V. 40. P. 93–113. https://doi.org/10.1080/10409230590918702
  21. Kumar P., Anaya J., Mudunuri S.B., Dutta A. // BMC Biol. 2014. V. 12. P. 78. https://doi.org/10.1186/s12915-014-0078-0
  22. Chen X., Sim S., Wurtmann E.J., Feke A., Wolin S.L. // RNA. 2014. V. 20. № 11. P. 1715–1724. https://doi.org/10.1261/rna.047241.114
  23. Diallo I., Provost P. // Int. J. Mol. Sci. 2020. V. 21. № 5. P. 1627. https://doi.org/10.3390/ijms21051627
  24. Zhang H., Zhang Y., Song Z., Li R., Ruan H., Liu Q. et al. // Int. J. Med. Microbiol. 2020. V. 310. № 1. P. 151356. https://doi.org/10.1016/j.ijmm.2019.151356
  25. Музыкантов А.А., Рожина Э.В., Фахруллин Р.Ф., Гомзикова М.О., Золотых М.А., Чернова О.А. и др. // Acta Naturae. 2021. Т. 13. № 4. С. 82–88. https://doi.org/10.32607/actanaturae.11506
  26. Cecil J.D., O’Brien-Simpson N.M., Lenzo J.C., Holden J.A., Chen Y.Y., Singleton W. et al. // PLoS One. 2016. V. 11. № 4. e0151967. https://doi.org/10.1371/journal.pone.0151967
  27. Sahr T., Escoll P., Rusniok C., Bui S., Pehau–Arnaudet G., Lavieu G. et al. // Nat. Commun. 2022. V. 13. № 1. P. 762. https://doi.org/10.1038/s41467-022-28454-x
  28. Turner L., Bitto N.J., Steer D.L., Lo C., D’Costa K., Ramm G. et al. // Front. Immunol. 2018. V. 9. P. 1466. https://doi.org/10.3389/fimmu.2018.01466
  29. Gottesman S., Storz G. // Cold Spring Harb. Perspect. Biol. 2011. V. 3. a003798. https://doi.org/10.1101/cshperspect.a003798
  30. Haning K., Cho S.H., Contreras L.M. // Front. Cell Infect. Microbiol. 2014. V. 4. P. 96. https://doi.org/10.3389/fcimb.2014.00096
  31. Острик А.А., Ажикина Т.Л., Салина Е.Г. // Успехи биологической химии. 2021. Т. 61. С. 229–252. https://doi.org/10.31857/S0555109920040121
  32. Stork M., Di Lorenzo M., Welch T.J., Crosa J.H. // J. Bacteriol. 2007. V. 189. № 9. P. 3479–88. https://doi.org/10.1128/JB.00619-06
  33. Michaux C., Verneuil N., Hartke A., Giard J.C. // Microbiol. 2014. V. 160. P. 1007–1019. https://doi.org/10.1099/mic.0.076208-0
  34. Beisel C.L., Storz G. // Mol. Cell. 2011. V. 41. P. 286–297. https://doi.org/10.1016/j.molcel.2010.12.027
  35. Stubbendieck R.M., Vargas–Bautista C., Straight P.D. // Front. Microbiol. 2016. V. 7. P. 1234. https://doi.org/10.3389/fmicb.2016.01234
  36. Ñahui Palomino R.A., Vanpouille C., Costantini P.E., Margolis L. // PLOS Pathogens. 2021. V. 17. № 5. e1009508. https://doi.org/10.1371/journal.ppat.1009508
  37. Uddin M.J., Dawan J., Jeon G., Yu T., He X., Ahn J. // Microorganisms. 2020. V. 8. № 5. P. 670. https://doi.org/10.3390/microorganisms8050670
  38. Koeppen K., Nymon A., Barnaby R., Bashor L., Li Z., Hampton T.H. et al. // Proc. Natl. Acad. Sci. USA. 2021. V. 118. № 28. e2105370118. https://doi.org/10.1073/pnas.2105370118
  39. Muraca M., Putignani L., Fierabracci A., Teti A., Perilongo G. // Discov. Med. 2015. V. 19. № 106. P. 343–348.
  40. Brameyer S., Plener L., Müller A., Klingl A., Wanner G., Jung K. // J. Bacteriol. 2018. V. 200. № 15. e00740-17. https://doi.org/10.1128/JB.00740-17
  41. Lee J., Lee E.Y., Kim S.H., Kim D.K., Park K.S., Kim K.P. et al. // Antimicrob. Agents Chemother. 2013. V. 57. № 6. P. 2589–2595. https://doi.org/10.1128/AAC.00522-12
  42. Schaar V., Uddback I., Nordstrom T., Riesbeck K. // J. Antimicrob. Chemother. 2014. V. 69. № 1. P. 117–120. https://doi.org/10.1093/jac/dkt307
  43. Toyofuku M., Morinaga K., Hashimoto Y., Uhl J., Shimamura H., Inaba H. et al. // ISME J. 2017. V. 11. P. 1504–1509. https://doi.org/10.1038/ismej.2017.13
  44. Rueter C., Bielaszewska M. // Front. Cell Infect. Microbiol. 2020. V. 10. P. 91. https://doi.org/10.3389/fcimb.2020.00091
  45. Zhao Z., Wang L., Miao J., Zhang Z., Ruan J., Xu L. et al. // Sci. Total Environ. 2022. V. 806. P. 151403. https://doi.org/10.1016/j.scitotenv.2021.151403
  46. Ahmadi Badi S., Moshiri A., Fateh A., Rahimi Jamnani F., Sarshar M., Vaziri F. et al. // Front. Microbiol. 2017. V. 8. P. 1610. https://doi.org/10.3389/fmicb.2017.01610
  47. Mjelle R., Aass K.R., Sjursen W., Hofsli E., Sætrom P. // iScience. 2020. V. 23. № 5. P. 101131. https://doi.org/10.1016/j.isci.2020.101131
  48. Rivera J., Cordero R.J., Nakouzi A.S., Frases S., Nicola A., Casadevall A. // Proc. Natl. Acad. Sci. USA. 2010. V. 107. № 44. P. 19002-7. https://doi.org/10.1073/pnas.1008843107
  49. Zingl F.G., Thapa H.B., Scharf M., Kohl P., Müller A.M., Schild S. // mBio. 2021. V. 12. № 3. e0053421. https://doi.org/10.1128/mBio.00534-21
  50. Kuipers M.E., Hokke C.H., Smits H.H., Nolte-'t Hoen E.N.M. // Front. Microbiol. 2018. V. 12. № 9. P. 2182. https://doi.org/10.3389/fmicb.2018.02182
  51. Chang X., Wang S.L., Zhao S.B., Shi Y.H., Pan P., Gu L. et al. // Mediators Inflamm. 2020. V. 2020. P. 1945832. https://doi.org/10.1155/2020/1945832
  52. Hua Y., Wang J., Huang M., Huang Y., Zhang R., Bu F. et al. // Emerg. Microbes Infect. 2022. V. 11. №1. P. 1281–1292. https://doi.org/10.1080/22221751.2022.2065935
  53. Sjöström A.E., Sandblad L., Uhlin B.E., Wai S.N. // Sci. Rep. 2015. V. 5. P. 15329. https://doi.org/10.1038/srep15329
  54. Chernov V.M., Chernova O.A., Mouzykantov A.A., Medvedeva E.S., Baranova N.B., Malygina T.Y. et al. // FEMS Microbiol. Lett. 2018. V. 365. № 18. https://doi.org/10.1093/femsle/fny185
  55. Marsh J.W., Hayward R.J., Shetty A.C., Mahurkar A., Humphrys M.S., Myers G.S.A. // Brief. Bioinform. 2018. V. 19. № 6. P. 1115–1129. https://doi.org/10.1093/bib/bbx043
  56. Tulkens J., Vergauwen G., Van Deun J., Geeurickx E., Dhondt B., Lippens L. et al. // Gut. 2020. V. 69. № 1. P. 191–193. https://doi.org/10.1136/gutjnl-2018-317726
  57. Bhattarai Y. // Neurogastroenterol. Motil. 2018. V. 30. № 6. e13366. https://doi.org/10.1111/nmo.13366
  58. Diallo I., Ho J., Lambert M., Benmoussa A., Husseini Z., Lalaouna D. et al. // PLoS Pathog. 2022. V. 18. № 9. e1010827. https://doi.org/10.1371/journal.ppat.1010827
  59. Yaghoubfar R., Behrouzi A., Ashrafian F., Shahryari A., Moradi H.R., Choopani S. et al. // Sci. Rep. 2020. V. 10. № 1. P. 22119. https://doi.org/10.1038/s41598-020-79171-8
  60. Cuesta C.M., Guerri C., Ureña J., Pascual M. // Int. J. Mol. Sci. 2021. V. 22. № 8. P. 4235. https://doi.org/10.3390/ijms22084235
  61. Rodrigues M., Fan J., Lyon C., Wan M., Hu Y. // Theranostics. 2018. V. 8. № 10. P. 2709–2721. https://doi.org/10.7150/thno.20576
  62. Vdovikova S., Gilfillan S., Wang S., Dongre M., Wai S.N., Hurtado A. // Sci. Rep. 2018. V. 8. № 1. P. 7434. https://doi.org/10.1038/s41598-018-25308-9
  63. O'Donoghue E.J., Krachler A.M. // Cell. Microbiol. 2016. V. 18. № 11. P. 1508–1517. https://doi.org/10.1111/cmi.12655
  64. Lebeer S., Vanderleyden J., De Keersmaecker S.C. // Nat. Rev. Microbiol. 2010. V. 8. № 3. P. 171–84. https://doi.org/10.1038/nrmicro2297
  65. Díaz–Garrido N., Badia J., Baldomà L. // J. Extracell. Vesicles. 2021. V. 10. № 13. e12161. https://doi.org/10.1002/jev2.12161
  66. Wegh C.A.M., Geerlings S.Y., Knol J., Roeselers G., Belzer C. // Int. J. Mol. Sci. 2019. V. 20. № 19. P. 4673. https://doi.org/10.3390/ijms20194673
  67. Molina–Tijeras J.A., Gálvez J., Rodríguez–Cabezas M.E. // Nutrients. 2019. V. 11. № 5. P. 1038. https://doi.org/10.3390/nu11051038
  68. Li M., Zhou H., Yang C., Wu Y., Zhou X., Liu H., Wang Y. // J. Control. Release. 2020. V. 323. P. 253–268. https://doi.org/10.1016/j.jconrel.2020.04.031
  69. Gilmore W.J., Johnston E.L., Zavan L., Bitto N.J., Kaparakis–Liaskos M. // Mol. Immunol. 2021. V. 134. P. 72–85. https://doi.org/10.1016/j.molimm.2021.02.027
  70. Nanou A., Zeune L.L., Bidard F.C., Pierga J.Y., Terstappen L.W.M.M. // Breast Cancer Res. 2020. V. 22. № 1. P. 86. https://doi.org/10.1186/s13058-020-01323-5
  71. Kim O.Y., Dinh N.T., Park H.T., Choi S.J., Hong K., Gho Y.S. // Biomaterials. 2017. V. 113. P. 68–79. https://doi.org/10.1016/j.biomaterials.2016.10.037
  72. Li Y., Wu J., Qiu X., Dong S., He J., Liu J. et al. // Bioact. Mater. 2022. V. 20. P. 548–560. https://doi.org/10.1016/j.bioactmat.2022.05.037
  73. Chen Q., Bai H., Wu W., Huang G., Li Y., Wu M. et al. // Nano Lett. 2020. V. 20. № 1. P. 11–21. https://doi.org/10.1021/acs.nanolett.9b02182
  74. Bachmann M.F., Jennings G.T. // Nat. Rev. Immunol. 2010. V. 10. № 11. P. 787–796. https://doi.org/10.1038/nri2868
  75. Huang W., Zhang Q., Li W., Chen Y., Shu C., Li Q. et al. // Front. Microbiol. 2019. V. 10. P. 1379. https://doi.org/10.3389/fmicb.2019.01379
  76. Macia L., Nanan R., Hosseini-Beheshti E., Grau G.E. // Int. J. Mol. Sci. 2019. V. 21. № 1. P. 107. https://doi.org/10.3390/ijms21010107
  77. Sierra G.V., Campa H.C., Varcacel N.M., Garcia I.L., Izquierdo P.L., Sotolongo P.F. et al. // NIPH. Ann. 1991. V. 14. P. 195–210.
  78. Micoli F, MacLennan C.A. // Semin. Immunol. 2020. V. 50. P. 101433. https://doi.org/10.1016/j.smim.2020.101433
  79. Koeberling O., Delany I., Granoff D.M. // Clin. Vaccine Immunol. 2011. V. 18. № 5. P. 736–42. https://doi.org/10.1128/CVI.00542-10
  80. Peeters C.C., Rümke H.C., Sundermann L.C., Rouppe van der Voort E.M., Meulenbelt J., et al // Vaccine. 1996. V. 14. № 10. P. 1009–1015. https://doi.org/10.1016/0264-410x(96)00001-1
  81. Benne N., van Duijn J., Kuiper J., Jiskoot W., Slütter B. // J. Control. Release. 2016. V. 234. P. 124–134. https://doi.org/10.1016/j.jconrel.2016.05.033
  82. Camacho A.I., Irache J.M., de Souza J., Sánchez–Gómez S., Gamazo C. // Vaccine. 2013. V. 31. № 32. P. 3288–3294. https://doi.org/10.1016/j.vaccine.2013.05.020
  83. Hu C.M., Fang R.H., Luk B.T., Zhang L. // Nat. Nanotechnol. 2013. V. 8. № 12. P. 933–938. https://doi.org/10.1038/nnano.2013.254
  84. Dehaini D., Wei X., Fang R.H., Masson S., Angsantikul P., Luk B.T. et al. // Adv. Mater. 2017. V. 29. № 16. . https://doi.org/10.1002/adma.201606209
  85. Wang D., Dong H., Li M., Cao Y., Yang F., Zhang K., etDai W., Wang C., Zhang X. // ACS Nano. 2018. V. 12. № 6. P. 5241–5252. https://doi.org/10.1021/acsnano.7b08355
  86. Ricci V., Carcione D., Messina S., Colombo G.I., D’Alessandra Y. // Int. J. Mol. Sci. 2020. V. 21. № 23. P. 8959. https://doi.org/10.3390/ijms21238959
  87. Hamady M., Knight R. // Genome Res. 2009. V. 19. № 7. P. 1141–1152. https://doi.org/10.1101/gr.085464.108
  88. Dauros–Singorenko P., Blenkiron C., Phillips A., Swift S. // FEMS Microbiol. Lett. 2018. V. 365. № 5. fny023. https://doi.org/10.1093/femsle/fny023
  89. Poupet C., Chassard C., Nivoliez A., Bornes S. // Front. Nutr. 2020. V. 7. P. 135. https://doi.org/10.3389/fnut.2020.00135
  90. Baenas N., Wagner A.E. // Genes Nutr. 2019. V. 14. P. 14. https://doi.org/10.1186/s12263-019-0641-y
  91. George D.T., Behm C.A., Hall D.H., Mathesius U., Rug M., Nguyen K.C. et al. // PLoS One. 2014. V. 9. № 9. :e106085. https://doi.org/10.1371/journal.pone.0106085

补充文件

附件文件
动作
1. JATS XML
2.

下载 (881KB)
3.

下载 (2MB)
4.

下载 (662KB)
5.

下载 (202KB)

版权所有 © В.М. Чернов, А.А. Музыкантов, Н.Б. Баранова, О.А. Чернова, 2023