Mechanisms of Growth Promotional and Protective Effects of Endophytic PGP-Bacteria in Wheat Plants Under the Impact of Drought (Review)
- Authors: Lastochkina О.V.1, Allagulova C.R.1
-
Affiliations:
- Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences
- Issue: Vol 59, No 1 (2023)
- Pages: 17-37
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674639
- DOI: https://doi.org/10.31857/S0555109923010038
- EDN: https://elibrary.ru/CUREEM
- ID: 674639
Cite item
Abstract
The review is devoted to the analysis and systematization of modern data on the participation of endophytic plant growth-promoting (PGP) bacteria in the regulation of growth, development, yield formation, and stress resistance of cultivated plants, mainly spring wheat as the main bread crop. Presently known data on the interaction of plants with PGP-bacteria under normal and drought conditions are described. Particular attention is paid to the molecular mechanisms of regulation of plant metabolism by PGP-bacteria, as well as their role in reducing the negative effects of drought, achieved by modulating various processes in plants, for example, improving the supply of moisture and mineral nutrients, and activating the antioxidant and osmoprotective plant systems. A key role in the adaptation and resistance/tolerance of plants caused by PGP-bacteria are played by their ability to produce various metabolites with the properties of biologically active substances, including substances with antimicrobial and hormonal activity, enzymes and other compounds. Information about the endophytic microbiome of wheat is given, the elucidation of the role and functions of which in plant stress response and adaptation is necessary for the development of effective, safe strategies for their practical application in order to maximize the adaptation and productive potential of wheat under changing environmental conditions.
About the authors
О. V. Lastochkina
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centreof the Russian Academy of Sciences
Author for correspondence.
Email: oksana.lastochkina@ufaras.ru
Russia, 450054, Ufa
Ch. R. Allagulova
Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centreof the Russian Academy of Sciences
Email: oksana.lastochkina@ufaras.ru
Russia, 450054, Ufa
References
- Asseng S., Martre P., Maiorano A., Rötter R.P., O’Leary G.J., Fitzgerald G.J. et al. // Global. Change. Biol. 2019. V. 25. № 1. P. 155–173. https://doi.org/10.1111/gcb.14481
- Pequeno D.N., Hernandez-Ochoa I.M., Reynolds M., Sonder K., MoleroMilan A., Robertson R.D. et al. // Environ. Res. Lett. 2021. V. 16. № 5. P. 054070. https://doi.org/10.1088/1748-9326/abd970
- Shakirova F.M., Avalbaev A.M., Bezrukova M.V., Fatkhutdinova R.A., Maslennikova D.R., Yuldashev R.A., Lastochkina O.V. In: Phytohormones and Abiotic Stress Tolerance in Plants / Ed. N. Khan, R. Nazar, N. Iqbal, N. Anjum. Berlin, Heidelberg: Springer, 2012. 308 p. https://doi.org/10.1007/978-3-642-25829-9_9
- Kosova A., Varma A., Choudhary D.K. // Agric. Res. 2015. V. 4. № 1. P. 31–41. https://doi.org/10.3390/ijms160920913
- Food and Agriculture Organization of the United Nations (FAO). 2016. http://www.fao.org/3/a-i6030e.pdf (2016).
- Goswami M., Deka S. // Pedosphere. 2020. V. 30. № 1. P. 40‒61. https://doi.org/10.1016/S1002-0160(19)60839-8
- United State Department of Agriculture. Foreign Agricultural Service // Global Market Analysis: International Production Assessment Division (IPAD). 2020. https://ipad.fas.usda.gov/
- Ehrlich P.R., Wilson E.O. // Science. 1991. V. 253. № 5021. P. 758–762. https://doi.org/10.1126/science.253.5021.758
- Thrupp L.A. // Int. Aff. 2000. V. 76. № 2. P. 265–281. https://doi.org/10.1111/1468-2346.00133
- Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Rodrigues W. L., Santini J. M. K., Alves C.J. // Acta Agric. Scand. Soil Plant Sci. 2019. V. 69. P. 606–617. https://doi.org/10.1080/09064710.2019.1628293
- Dmytryk A., Michalak I., Wilk R., Chojnacka K., G’orecka H., G’orecki H. // Waste Biomass Valori. 2015. V. 6. P. 441–448. https://doi.org/10.1007/s12649-015-9363-6
- Lutts S., Benincasa P., Wojtyla Ł., Kubala S., Pace R., Lechowska K., Quinet M., Garnczarska M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique / Ed. S. Araujo, A. Balestrazzi. London, UK: IntechOpen, 2016. 212 p. https://doi.org/10.5772/64420
- Seifikalhor M., Hassani S.B., Aliniaeifard S. // J. Plant Growth Regul. 2020. V. 39. P. 1009–1021. https://doi.org/10.1007/s00344-019-10038-7
- Gebeyaw M. // Int. J. Appl. Agric. Sci. 2020. V. 6. № 6. P. 185–190. https://doi.org/10.11648/j.ijaas.20200606.14
- Singh S., Singh U.B., Malaviya D., Paul S., Sahu P.K., Trivedi M., Paul D., Saxena A.K. // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 1396. https://doi.org/10.3390/ijerph17041396
- Lastochkina O.V., Aliniaeifard S., Seifikalhor M., Yuldashev R., Pusenkova L., Garipova S. In: Wheat Production in Changing Environments /Ed. M. Hasanuzzaman, K. Nahar, M. Hossain. Singapore: Springer, 2019. p. 579–614.https://doi.org/10.1007/978-981-13-6883-7_23
- Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. // Annu. Rev. Phytopathol. 2015. V. 53. P. 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132
- Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. // Environ. Exp. Bot. 2013. V. 94. P. 45–56. https://doi.org/10.1016/j.envexpbot.2012.02.013
- Balmer A., Pastor V., Gamir J., Flors V., Mauch-Mani B. // Tr. Plant Sci. 2015. V. 20. P. 443–452. https://doi.org/10.1016/j.tplants.2015.04.002
- Hallmann J., Quadt-Hallmann A., Mahaffee W.F., Kloepper J.W. // Can. J. Microbiol. 1997. V. 43. № 10. P. 895‒914.https://doi.org/10.1139/m97-131
- Sood G., Kaushal R., Sharma M. // Vegetos. 2020. V. 33. № 4. P. 782–792. https://doi.org/10.1007/s42535-020-00149-y
- Van Loon L.C. // Eur. J. Plant Pathol. 2007. V. 119. P. 243–254. https://doi.org/10.1007/978-1-4020-6776-1_2
- Akram W., Anjum T., Ali B., Ahmad A. // Int. J. Agric. Biol. 2013. V. 15. № 6. P. 1289–1294.
- Maksimov I.V., Veselova S.V., Nuzhnaya T.V., Sarvarova E.R., Khairullin R.M. // Russ. J. Plant Physiol. 2015. V. 62. № 6. P. 715–726. https://doi.org/10.1134/S1021443715060114
- Ma Y. Plant–microbe Interactions in Agro-ecological Perspectives / Ed. D. Singh, H. Singh, R. Prabha, Singapore: Springer, 2017. 657 p. https://doi.org/10.1007/978-981-10-6593-4_4
- Dimkpa C., Weinand T., Asch F. // Plant Cell Environ. 2009. V. 32. № 12. P. 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x
- Abdel-Rahman S., Abdel-Kader A.A.S., Khalil S.E. // Nat. Sci. 2011. V. 9. P. 31–36.
- Baez-Rogelio A., Morales-García Y.E., Quintero-Hernández V., Muñoz-Rojas J. // Microb. Biotechnol. 2016. V. 10. № 1. P. 19–21.https://doi.org/10.1111/1751-7915.12448
- Barnawal D., Bharti N., Pandey S.S., Pandey A., Chanotiya C.S., Kalra A. // Physiol. Plant. 2017. V. 161. № 4. P. 502–514. https://doi.org/10.1111/ppl.12614
- Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A. L., Khan A., AL-Harrasi A. // Microbiol. Res. 2018. V. 209. P. 21–32. https://doi.org/10.1016/j.micres.2018.02.003
- Singh M., Tiwari N. // Comm. Integr. Biol. 2021. V. 14. № 1. P. 136–150.https://doi.org/10.1080/19420889.2021.1937839
- Arzanesh M.H., Alikhani H.A., Khavazi K., Rahimian, H.A., Miransari M. // World J. Microbiol. Biotechnol. 2011. V. 27. № 2. P. 197–205. https://doi.org/10.1007/s11274-010-0444-1
- Cherif H., Marasco R., Rolli E., Ferjani R., Fusi M., Soussi A. et al. // Env. Microbiol. Rep. 2015. V. 7. № 4. P. 668–678. https://doi.org/10.1111/1758-2229.12304
- Amna S., Din Y., Sarfraz B., Xia Y., Kamran M.A., Javed M.T. et al. // Eco. Toxicol. Environ. Saf. 2019. V. 183. P. 109466. https://doi.org/10.1016/j.ecoenv.2019.109466
- Kasim W.A., Osman M.E.H., Omar M.N., Salama S. // Bull. Natl. Res. Cent. 2021. V. 45. № 95. P. 1–14. https://doi.org/10.1186/s42269-021-00546-6
- Rashid U., Yasmin H., Hassan M.N., Naz R., Nosheen A., Sajjad M. et al. // Plant. Cell. Rep. 2022. V. 41. P. 1–21. https://doi.org/10.1007/s00299-020-02640-x
- Compant S., Samad A., Faist H., Sessitsch A. // J. Adv. Res. 2019. V. 19. P. 29–37. https://doi.org/10.1016/j.jare.2019.03.004
- Rana K.L., Kour D., Kaur T., Sheikh I., Yadav A.N., Kumar V. et al. // Proc. Natl. Acad. Sci, India. Sect. B: Biol. Sci. 2020. V. 90. № 5. P. 969–979. https://doi.org/10.1007/s40011-020-01168-0
- Kavamura V.N., Mendes R., Bargaz A., Mauchline T.H. // Comput. Struct. Biotechnol. J. 2021. V. 19. P. 1200–1213. https://doi.org/10.1016/j.csbj.2021.01.045
- Pandey P.K., Singh M.C., Singh S.S., Singh A.K., Kumar M., Pathak M.M. et al. // Int. J. Curr. Microbiol. App. Sci. 2017. V. 6. № 2. P. 11–21. https://doi.org/10.20546/ijcmas.2017.602.002
- Yang J., Kloepper J.W., Ryu C.M. // Trend. Plant. Sci. 2009. V. 14. № 1. P. 1–4. https://doi.org/10.1016/j.tplants.2008.10.004
- Bokhari A., Essack M., Lafi F.F., Andres-Barrao C., Jalal R., Alamoudi S. et al. // Sci. Rep. 2019. V. 9. P. 18154.https://doi.org/10.1038/s41598-019-54685-y
- Bukhat S., Imran A., Javaid S., Shahid M., Majeed A., Naqqash T. // Microbiol. Res. 2020. V. 238. P. 126486. https://doi.org/10.1016/j.micres.2020.126486
- Lastochkina O.V., Baymiev An., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I. et al. // Plants. 2020. V. 9. № 1. P. 76. https://doi.org/10.3390/plants9010076
- Васильева Е.Н., Ахтемова Г.А., Жуков В.А., Тихонович И.А. // Экол. генетика. 2019. V. 17. № 1. P. 19–32. https://doi.org/10.17816/ecogen17119-32
- Žiarovská J., Medo J., Kyseľ M., Zamiešková L., Kačániová M. // Plants. 2020. V. 9. № 2. P. 266. https://doi.org/10.3390/plants9020266
- Kazi N., Deaker R., Wilson N., Muhammad K., Trethowan R. // Field Crops Res. 2016. V. 196. P. 368–378. https://doi.org/10.1016/j.fcr.2016.07.012
- Schlemper T.R., Dimitrov M.R., Gutierrez F.A.S., van Veen J.A., Silveira A.P., Kuramae E.E. // Peer J. 2018. V. 6. P. e5346. https://doi.org/10.7717/peerj.5346
- Lastochkina O.V., Garshina D., Ivanov S., Yuldashev R., Khafizova R., Allagulova Ch. et al. // Plants. 2020a. V. 9. № 12. P. 1810. https://doi.org/10.3390/plants9121810
- El-Megeed A., Fayrouz H., Mohiy M. // Egyptian J. Bot. 2022. V. 62. № 1. P. 275–290.
- Ishak Z., Mohd Iswadi M.K., Russman Nizam A.H., Ahmad Kamil M. J., Ernie Eileen R.R., Wan Syaidatul A., Ainon H. // Malays. Cocoa J. 2016. V. 9. № 1. P. 127‒133.
- Saikia J., Sarma R.K., Dhandia R., Yadav A., Bharali R., Gupta V.K., Saikia R. // Sci. Rep. 2018. V. 8. № 1. P. 3560. https://doi.org/10.1038/s41598-018-21921-w
- Boleta E.H.M., Galindo F.S., Jalal A., Santini J.M.K., Rodrigues W.L., Lima B.H.D. et al. // Front. Sustain. Food Syst. 2020. V. 4. P. 607262. https://doi.org/10.3389/fsufs.2020.607262
- Naqqash T., Fatima M., Rehman-ur-Saif., Bukhat S., Shahid M., Shabir C. et al. // J. Plant. Growth. Regul. 2021. P. 1–15. https://doi.org/10.1007/s00344-021-10519-8
- Федоренко В.Ф., Завалина А.А., Милащенко Н.З. Научные основы производства высококачественного зерна пшеницы. М.: ФГБНУ Росинформагротех, 2018. 396 с. https://doi.org/10.25930/skc8-gc14
- Di Benedetto N.A., Corbo M.R., Campaniello D., Cataldi M.P., Bevilacqua A., Sinigaglia M., Flagella Z. // AIMS Microbiol. 2017. V. 3. № 3. P. 413–434. https://doi.org/10.3934/microbiol.2017.3.413
- Lastochkina O., Pusenkova L., Yuldashev R., Yuldashev R., Babaev M., Garipova S. et al. // Plant. Physiol. Biochem. 2017. V. 121. P. 80–88. https://doi.org/10.1016/j.plaphy.2017.10.020
- Пищик В.Н., Воробьев Н.И., Моисеев К.Г., Свиридова О.В., Сурин В.Г. // Почвоведение. 2015. № 1. С. 87–94. https://doi.org/10.7868/S0032180X1501013X
- Fukami J., Nogueira M.A., Araujo R.S., Hungria M. // AMB Express. 2016. V. 6. № 3. P. 3–16. https://doi.org/10.1186/s13568-015-0171-y
- Fukami J., Ollero F.J., Megías M., Hungria M. //AMB Express 2017. V. 7. P. 153–163. https://doi.org/10.1186/s13568-017-0453-7
- Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santin J.M.K., Alves C.J., Ludkiewicz M.G.Z. // Res. Agropec. Bras. 2017. V. 52. № 9. P. 794–805.
- Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santini J.M., Montaniri R., Freitas L.A., Rodrigues W.L. // Commun. Soil Sci. Plant Anal. 2019. V. 50. P. 2429–2441. https://doi.org/10.1080/00103624.2019.1667369
- Ardakani M.R., Mazaheri D., Mafakheri S., Moghaddam A. // Physiol. Mol. Biol. Plants. 2011. V. 17. № 2. P. 181–192. https://doi.org/10.1007/s12298-011-0065-7
- Rodríguez H., Fraga R., Gonzalez T., Bashan Y. // Plant. Soil. 2006. V. 287. P. 15–21. https://doi.org/10.1007/s11104-006-9056-9
- Karimzadeh J., Alikhani H.A., Etesami H., Pourbabaei A.A. // J. Plant. Growth. Regul. 2021. V. 40. № 1. P. 162–178. https://doi.org/10.1007/s00344-020-10087-3
- Scanlan C.A., Bell R.W., Brennan R.F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser // Field Crops Res. 2015. V. 178. P. 125–134. https://doi.org/10.1016/j.fcr.2015.03.019
- Chandra D., Srivastava R., Gupta V.V.S.R., Franco C.M., Paasricha N., Saifi S.K., Sharma A.K. // Plant. Soil. 2019. V. 441. № 1–2. P. 261–281. https://doi.org/10.1007/s11104-019-04115-9
- Złoch M., Thiem D., Gadzała-Kopciuch R., Hrynkiewicz K. // Chemosphere. 2016. V. 156. P. 312–325. https://doi.org/10.1016/j.chemosphere.2016.04.130
- Sadeghi A., Karimi E., Dahaji P.A., Javid, M.G., Dalvand, Y., Askari H // World. J. Microbiol. Biotechnol. 2012. V. 28. № 4. P. 1503–1509. https://doi.org/10.1007/s11274-011-0952-7
- Saha M., Sarkar S., Sarkar B., Sharma, B.K., Bhattacharjee S., Tribedi P. // Environ. Sci. Pollut. Res. 2016. V. 23. №. 5. P. 3984–3999. https://doi.org/10.1007/s11356-015-4294-0
- Albelda-Berenguer M., Monachon M., Joseph E. // Adv. Appl. Microbiol. 2019. V. 106. P. 193–225. https://doi.org/10.1016/bs.aambs.2018.12.001
- Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция. Уфа: Гилем, 2001. 160 с.
- Sgroy V., Cassán F., Masciarelli O.F., Del Papa M.F., Lagares A., Luna V. // Appl. Microbiol. Biotechnol. 2009. V. 85. № 2. P. 371–381. https://doi.org/10.1007/s00253-009-2116-3
- Кудоярова Г.Р., Курдиш И.К., Мелентьев А.И. // Изв. УфНЦ РАН. 2011. №. 3–4. С. 5–15.
- Pankievicz V.C.S., do Amaral F.P., Santos K.F.D.N., Agtuca B., Xu Y., Schueller M. J., Ferrieri R.A. // Thy. Plant. J. 2015. V. 81. № 6. P. 907–919. https://doi.org/10.1111/tpj.12777
- Wang C.J., Yang W., Wang C.J., Gu C., Niu D.D., Liu H.X., Guo J.H. // PLoS One. 2012. V. 7. № 12. P. e52565.https://doi.org/10.1371/journal.pone.0052565
- Wang L., Ruan Y.L. // Front. Plant Sci. 2013. V. 4. P. 163. https://doi.org/10.3389/fpls.2013.00163
- Poupin M.J., Greve M., Carmona V., Pinedo I. // Front. Plant Sci. 2016. V. 7. P. 492. https://doi.org/10.3389/fpls.2016.00492
- Khan N., Ali S., Tariq H., Latif S., Yasmin H., Mehmood A., Shahid M. A. // Agronomy. 2020. V. 10. № 11. P. 1683. https://doi.org/10.3390/agronomy10111683
- Egamberdieva D., Kucharova Z. // Biol. Fertil. Soils. 2009. V. 45. № 6. P. 563–571. https://doi.org/10.1007/s00374-009-0366-y
- Creus C.M., Sueldo R.J., Barassi C.A. // Can. J. Bot. 2004. V. 82. № 2. P. 273–281. https://doi.org/10.1139/b03-119
- El-Akhdar I.A., Elshikh M., Allam N.G., Kamal F., Abou-Shanab R., Staehelin C. // Environ. Biodivers. Soil Secur. 2019. V. 3. P. 15–17. https://doi.org/10.21608/jenvbs.2019.16428.1069
- Ali S., Khan N. // Microbiol. Res. 2021. V. 249. P. 126771. https://doi.org/10.1016/j.micres.2021.126771
- Glick B.R. // Scientifica. 2012. P. 963401. https://doi.org/10.6064/2012/963401
- Мартыненко Е.В., Архипова Т.Н. // Агрохимия. 2010. № 8. С. 35–42.
- Xu J., Li X., Luo L. // Appl. Environ. Microbiol. 2012. V. 78. № 22. P. 8056–8061. https://doi.org/10.1128/AEM.01276-12
- Егоршина А.А., Хайруллин Р.М., Сахабутдинова А.Р., Лукьянцев М.А. // Физ. раст. 2012. Т. 59. №. 1. С. 148.
- Tsukanova K.A., Meyer J.J.M., Bibikova T.N. // S. Afr. J. Bot. 2017. V. 113. P. 91–102. https://doi.org/10.1016/j.sajb.2017.07.007
- Nett R.S., Montanares M., Marcassa A., Lu X., Nagel R., Charles T.C., Peters R.J. // Nat. Chem. Biol. 2017. V. 13. № 1. P. 69–74. https://doi.org/10.1038/nchembio.2232
- Bastián F., Cohen A., Piccoli P., Luna V., Baraldi R., Bottini R. // Plant. Growth. Regul. 1998. V. 24. № 1. P. 7–11. https://doi.org/10.1023/A:1005964031159
- Atzorn R., Crozier A., Wheeler C.T., Sandberg G. // Planta. 1988. V. 175. № 4. P. 532–538. https://doi.org/10.1007/BF00393076
- Khan A.L., Waqas M., Kang S., Al-Harrasi A., Hussain J., Al-Rawahi A., Lee I.J. // J. Microbiol. 2014. V. 52. № 8. P. 689–695. https://doi.org/10.1007/s12275-014-4002-7
- Huang G.T., Ma S.L., Bai L.P., Zhang L., Ma, H., Jia P., Guo Z.F. // Mol. Biol. Rep. 2012. V. 39. № 2. P. 969–987. https://doi.org/10.1007/s11033-011-0823-1
- Cohen A.C., Travaglia C.N., Bottini R., Piccoli P.N. // Bot. 2009. V. 87. № 5. P. 455–462. https://doi.org/10.1139/B09-023
- Cohen A.C., Bottini R., Pontin M., Berli F.J., Moreno D., Boccanlandro H., Piccoli P.N. // Physiol. Plant. 2015. V. 153. № 1. P. 79–90. https://doi.org/10.1111/ppl.12221
- Bresson J., Varoquaux F., Bontpart T., Touraine B., Vile D. // New Phytol. 2013. V. 200. № 2. P. 558–569. https://doi.org/10.1111/nph.12383
- Park J.W., Balaraju K., Kim J.W., Lee S.W., Park K. // Biol. Control. 2013. V. 65. № 2. P. 246–257. https://doi.org/10.1016/j.biocontrol.2013.02.002
- Salomon M.V., Bottini R., de Souza F.G.A., Cohen A.C., Moreno D., Gil M., Piccoli P. // Physiol. Plant. 2014. V. 151. № 4. P. 359–374. https://doi.org/10.1111/ppl.12117
- Shahzad R., Khan A.L., Saqib B., Waqas M., Kang S.M., Lee I.J. // Environ. Exp. Botany. 2017. V. 136. P. 68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010
- Li Y., Xu S., Gao J., Pan S., Wang G. // Plant Growth Regul. 2016. V. 78. P. 43–55. https://doi.org/10.1007/s10725-015-0073-7
- Naing A.H., Maung T.T., Kim C.K. // Physiol. Plant. 2021. V. 173. № 4. P. 1992–2012. https://doi.org/10.1111/ppl.13545
- Forchetti G., Masciarelli O., Alemano S., Alvarez D., Abdala G. // Appl. Microbiol. Biotechnol. 2007. V. 76. № 5. P. 1145–1152. https://doi.org/10.1007/s00253-007-1077-7
- Chourdhary D., Johri B. // Microbiol. Res. 2009. V. 164. № 5. P. 493–513. https://doi.org/10.1016/j.micres.2008.08.007
- García-Gutiérrez L., Zeriouh H., Romero D., Cubero J., de Vicente A., Pérez-García A. // Microb. Biotechnol. 2013. V. 6. № 3. P. 264–274. https://doi.org/10.1111/1751-7915.12028
- Niu D.D., Liu H.X., Jiang C.H., Jiang C.H., Zhang W.Z., Wang Y.P., Guo J.H. // Mol. Plant Microb. Inter. 2011. V. 24 № 5. P. 533–542. https://doi.org/10.1094/MPMI-09-10-0213
- Egamberdieva D., Wirth S.J., Alqarawi A.A., Abd Allah E.F., Hashem A. // FMC. 2017. V. 8. P. 2104. https://doi.org/10.3389/fmicb.2017.02104
- Shakirova F.M., Sakhabutdinova A.R., Bezrukova M., Fatkhutdinova R.A., Fatkhutdinova D.R. // Plant. Sci. 2003. V. 164. P. 317–322. https://doi.org/10.1016/S0168-9452(02)00415-6
- Singh U.P., Sarma B.K., Singh D.P. // Curr. Microbiol. 2003. V. 46. № 2. P. 131–140. https://doi.org/10.1007/s00284-002-3834-2
- Vlot A.C., Dempsey D.A., Klessig D.F. // Annu. Rev. Phytopathol. 2009. V. 47. P. 177–206. https://doi.org/10.1146/annurev.phyto.050908.135202
- Wu L., Huang Z., Li X., Ma L., Gu Q., Wu H., Gao X. // Front. Microbiol. 2018. V. 9. P. 847. https://doi.org/10.3389/fmicb.2018.00847
- Panpatte D.G., Shukla Y.M., Shelat H.N., Vyas, R.V., Jhala Y.K. In: Microorganisms for Green Revolution / Ed. D.G. Panpatte, Y.K. Jhala, R.V. Vyas, H.N. Shelat. Singapore: Springer, 2017. 443 p. https://doi.org/10.1007/978-981-10-6241-4
- Chiappero J., Cappellari L. del R., Alderete L.G.S., Palermo T.B., Banchio E. // Ind. Crop. Prod. 2019. V. 139. P. 111553. https://doi.org/10.1016/j.indcrop.2019.111553
- Vaishnav A., Varma A., Tuteja N., Choudhary D.K. / Ed. D.K. Choudhary, A.K. Sharma, P. Agarwal, A. Varma, N. Tuteja. Singapore: Springer, 2017. 373 p. https://doi.org/10.1007/978-981-10-5553-9
- ALKahtani M.D.F., Fouda A., Attia K.A. // Agronomy. 2020. V. 10. № 9. P. 1325. https://doi.org/10.3390/agronomy10091325
- Park Y.S., Dutta S., An M., Raaijmakers J.M., Park K. // Biochem. Biophys. Res. Comm. 2015. V. 461. № 2. P. 361–365. https://doi.org/10.1016/j.bbrc.2015.04.039
- Tahir H.A.S., Gu Q., Wu H., Raza W., Hanif A., Wu L., Gao X. // Front. Microbiol. 2017. V. 8. P. 171. https://doi.org/10.3389/fmicb.2017.00171
- Lemfack M.C., Nickel J., Dunkel M., Preissner R., Piechulla B. // Nucleic Acids Res. 2014. V. 42. № 1. P. 744–748. https://doi.org/10.1093/nar/gkt1250
- Bitas V., Kim H.S., Bennett J.W., Kang S. // Mol. Plant. Microbe. Interact. 2013. V. 26. № 8. P. 835–843. https://doi.org/10.1094/MPMI-10-12-0249-CR
- Audrain B., Mohamed A.F., Ch.-M. Riu, J.-M. Ghigo // FEMS Microbiol. Rev. 2015. V. 39. № 2. P. 222–233. https://doi.org/10.1093/femsre/fuu013
- Niinemets Ü. // Trends Plant Sci. 2010. V. 15. № 3. P. 145–153. https://doi.org/10.1016/j.tplants.2009.11.008
- Timmusk S., El-Daim Abd I., Copolovici L., Copolovici L., Tanilas T., Kännaste A., Niinemets Ü. // PLoS One. 2014. V. 9. № 5. P. e96086.https://doi.org/10.1371/journal.pone.0096086
- Cho S.M., Kang B.R., Han S.H., Anderson A.J., Park J.Y., Lee Y.H., Kim Y.C // APS Pub. 2008. V. 21. № 8. P. 1067–1075. https://doi.org/10.1094/MPMI-21-8-1067
- Bhattacharyya D., Yu S.M., Lee Y.H. // Plant. Growth. Regul. 2015. V. 75. № 1. P. 297–306. https://doi.org/10.1007/s10725-014-9953-5
- Bhattacharyya D., Lee Y.H. // J. Plant. Physiol. 2017. V. 214. P. 64–73. https://doi.org/10.1016/j.jplph.2017.04.002
- Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. // Microbiol. Res. 2016. V. 184. P. 13–24. https://doi.org/10.1016/j.micres.2015.12.003
- Chen Y., Gozzi R., Yan F., Chai Y. // ASM J. 2015. V. 6. № 3. P. e00392. https://doi.org/10.1128/mBio.00392-15
- Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Kloepper J.W., Paré P.W. // Plant Physiol. 2004. V. 134. № 3. P. 1017–1026. https://doi.org/10.1104/pp.103.026583
- Raza W., Wang J., Wu Y., Ling N., Wei Z., Huang Q., Shen Q. // Appl. Microbiol. Biotechnol. 2016. V. 100. № 17. P. 7639–7650. https://doi.org/10.1007/s00253-016-7584-7
- Vardharajula S., Zulfikar A.S., Grover M., Reddy G., Bandi V. // J. Plant. Interact. 2011. V. 6. № 1. P. 1–14. https://doi.org/10.1080/17429145.2010.535178
- Dakora F.D., Matiru V.N., Kanu A.S. // Front. Plant Sci. 2015. V. 6. P. 700. https://doi.org/10.3389/fpls.2015.00700
- Tanaka K., Cho S.H., Lee H., Pham A.Q., Batek J.M., Cui S., Stacey G. // J. Exp. Bot. 2015. V. 66. № 19. P. 5727–5738. https://doi.org/10.1093/jxb/erv260
- Bramhachari P.V., Nagaraju G.P., Kariali E. In Role of Rhizospheric Microbes in Soil /Ed. V.S. Meena. Singapore: Springer, 2018. 400 p. https://doi.org/10.1007/978-981-10-8402-7
- Talebi Atouei M., Pourbabaee A.A., Shorafa M. // Iranian J. Sci. Technol. Trans. A. 2019. V. 43. № 4. P. 2725–2733. https://doi.org/10.1007/s40995-019-00753-x
- Alami Y., Achouak W., Marol C., Heulin T. // Appl. Environ. Microbiol. 2000. V. 66. № 8. P. 3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
- Awasthi S., Srivastava P., Mishra P.K. // Agric. Res. Technol. 2017. V. 8. № 2. P. 8–10. https://doi.org/10.19080/ARTOAJ.2017.08.555731
- Gontia-Mishra I., Sapre S., Sharma A., Tiwari S. // Plant. Biol. 2016. V. 18. № 6. P. 992–1000. https://doi.org/10.1111/plb.12505
- Amellal N., Burtin G., Bartoli F., Heulin T. // Appl. Environ. Microbiol. 1998. V. 64. № 10. P. 3740–3747. https://doi.org/10.1128/AEM.64.10.3740-3747.1998
- Subramanian S., Smith D.L. // Front. Plant. Sci. 2015. V. 6. P. 909. https://doi.org/10.3389/fpls.2015.00909
- Глобальный климат и почвенный покров России: проявления засухи, меры предупреждения, борьбы, ликвидация последствий и адаптационные мероприятия (сельское и лесное хозяйство). / Ред. Р.С.-Х. Эдельгериев. М.: OOO “Изд. МБА”, 2021. 700 с.
- Hunt E., Femia F., Werrell C., Christian J.I., Otkin J.A., Basara J., McGaughey K. // Weather. Clim. Extremes. 2021. V. 34. P. 100383. https://doi.org/10.1016/j.wace.2021.100383
- Okuyama L.A., Federizzi L.C., Barbosa N.J.F // Ciênc. Rural. 2004. V. 34. № 6. P. 1701–1708. https://doi.org/10.1590/S0103-84782004000600006
- Araus J.L., Slafer G.A., Royo C., Serret M.D. // Crit. Rev. Plant Sci. 2008. V. 27. № 6. P. 377–412. https://doi.org/10.1080/07352680802467736
- Khan M.Y., Zahir Z.A., Asghar H.N., Waraich E.A. // Pak. J. Bot. 2017. V. 49. № 4. P. 1541–1551.
- Çakmakçı R., Turan M., Kıtır N., Güneş, A., Nikerel E., Özdemir B.S., Mokhtari N.E.P. In: Wheat Improvement, Management and Utilization /Ed. R. Wanyera, J. Owuoche. London, UK: IntechOpen Limited, 2017. 394 p. https://doi.org/10.5772/63694
- Chakraborty U., Chakraborty B.N., Chakraborty A.P., Dey P.L. // World J. Microbiol. Biotechnol. 2013. V. 29. № 5. P. 789–803. https://doi.org/10.1007/s11274-012-1234-8
- Alvarez M.I., Sueldo R.J., Barassi C.A. // Cereal. Res. Commun. 1996. V. 24. № 1. P. 101–107.
- Hussain M.B., Zahir Z.A., Asghar H.N., Asghar M. // Int. J. Agric. Biol. 2014. V. 16. P. 3‒13.
- Chen C., Xin K., Liu H., Cheng J., Shen X., Wang Y., Zhang L. // Sci. Rep. 2017. V. 7. № 1. P. 41564. https://doi.org/10.1038/srep41564
- Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Prigent-Combaret C. // Front. Plant Sci. 2013. V. 4. P. 356. https://doi.org/10.3389/fpls.2013.00356
- Ullah A., Nisar M., Ali H., Hazrat A., Hayat K., Keerio A.A., Yang X. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 7385‒7397. https://doi.org/10.1007/s00253-019-10045-4
- Kasim W.A., Osman M.E., Omar M.N., El-Daim A., Islam A., Bejai S., Meijer J. // J. Plant. Growth. Regul. 2013. V. 32. P. 122–130.https://doi.org/10.1007/s00344-012-9283-7
- El-Afry M.M. // Acta. Biol. Szeged. 2012. V. 56. № 2. P. 165–174.
- Pereyra M.A., García P., Colabelli M.N., Barassi C.A., Creus C.M. // Appl. Soil. Eco. 2012. V. 53. P. 94–97. https://doi.org/10.1016/j.apsoil.2011.11.007
- Furlan F., Saatkamp K., Volpiano C.G., de Assis Franco F., dos Santos M.F., Vendruscolo, E.C.G., da Costa A.C.T. // Sci. Agrar. 2017. V. 18. № 2. P. 104–113.
- Yaghoubi Khanghahi M.Y., Leoni B., Crecchio C. // Acta. Physiol. Plant. 2021. V. 43. P. 123. https://doi.org/10.1007/s11738-021-03289-z
- Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. // Plant Growth Regul. 2014. V. 73. № 2. P. 121–131. https://doi.org/10.1007/s10725-013-9874-8
- Nemati A., Sedghi M. // J. Crop Prod. 2022. V. 13. № 4. P. 87–110. https://doi.org/10.22069/EJCP.2021.18408.2364
- Maslennikova D., Lastochkina O. // Plants. 2021. V. 10. P. 2557. https://doi.org/10.3390/plants10122557
- Мерзляк М.Н. // Соросовский Образ. Журн. 1999. Т. 9. С. 20–26.
- Колупаев Ю.Е., Карпец Ю.В., Ястреб Т.О., Луговая А.А. // Вісн. Харків. нац. аграрy. ун-ту. Сер. Біологія. 2016. Т. 1. № 37. С. 42–62.
- Kaushal M., Wani S.P. // Agriculture. Ecosyst. Env. 2016. V. 231. P. 68–78. https://doi.org/10.1016/j.agee.2016.06.031
- Яруллина Д.Р., Асафова Е.В., Картунова Ю.Е., Зиятдинова Г.К., Ильинская О.Н. // Прикл. биохимия микробиология. 2014. Т. 50. № 2. С. 189–192. https://doi.org/10.7868/S0555109914020196
- Ullah S., Bano A. // Can. J. Microbiol. 2015. V. 61. № 4. P. 307–313. https://doi.org/10.1139/cjm-2014-0668
- Khalafallah A.A., Abo-Ghalia H.H. // J. Appl. Sci. Res. 2008. V. 4. № 5. P. 559–569.
- Chaves M.M., Maroco J.P., Pereira J.S. // Funct. Plant Biol. 2003. V. 30. № 3. P. 239–264. https://doi.org/10.1071/FP02076
- Чжоу К., Юй Б.Д. // Физиология растений. 2009. Т. 56. № 5. С. 751–758.
- Sandhya V.D., Ali S., Grover M., Reddy G., Venkateswarlu B. // Plant. Growth. Regul. 2010. V. 62. № 1. P. 21–30.
- Jogawat A. In: Molecular Plant Abiotic Stress: Biology and Biotechnology /Eds. A. Roychoudhury, D.K. Tripathi. Willy, 2019. P. 91‒97. https://doi.org/10.1002/9781119463665
- Paul D., Nair S. // J. Basic. Microbiol. 2008. V. 48. № 5. P. 378–384. https://doi.org/10.1002/jobm.200700365
- Ilyas N., Mumtaz K., Akhtar N., Yasmin H., Sayyed R.Z., Khan W., Ali Z. // Sustainability. 2020. V. 12. № 21. P. 8876. https://doi.org/10.3390/su12218876
- Gusain Y.S., Singh U.S., Sharma A.K. // Afr. J. Biotechnol. 2015. V. 14. № 9. P. 764‒773. https://doi.org/10.5897/AJB2015.14405
- Shintu P.V., Jayaram K.M. // Trop. Plant. Res. 2015. V. 2. P. 17–22.
- Camaille M., Fabre N., Clément C., Ait Barka E. // Microorganisms. 2021. V. 9. № 4. P. 687. https://doi.org/10.3390/microorganisms9040687
- Suárez R., Wong A., Ramírez M., Barraza A., Orozco M.D.C., Cevallos M.A., Iturriaga G. // Mol. Plant Microbe Interact. 2008. V. 21. № 7. P. 958–966. https://doi.org/10.1094/MPMI-21-7-0958
- Forni C., Duca D., Glick B.R. // Plant Soil. 2017. V. 410. №. 1–2. P. 335–356. https://doi.org/10.1007/s11104-016-3007-x
- Toju H., Peay K.G., Yamamichi M. // Nat. Plant. 2018. V. 4. P. 247–257. https://doi.org/10.1038/s41477-018-0139-4
- Lahti L., Shetty S., Blake T., Salojarvi J. // Version. 2017. V. 1. № 5. P. 28.
- Shade A., Stopnisek N. // Curr. Opin. Microbiol. 2019. V. 49. P. 50–58. https://doi.org/10.1016/j.mib.2019.09.008
- Cernava T., Erlacher A., Soh J., Sensen C.W., Grube M., Berg G. // Microbiome. 2019. V. 7. P. 13. https://doi.org/10.1186/s40168-019-0624-7
- Kavamura V.N., Robinson R.J., Hayat R., Clark I. M., Hughes D., Rossmann M., Auchline T.H. // Front. Microbiol. 2019. V. 10. P. 2625. https://doi.org/10.3389/fmicb.2019.02625
- Simonin M., Dasilva C., Terzi V., Ngonkeu E. L., Diouf D., Kane A. et al. // FEMS Microbiol. Ecol. 2020. V. 96. № 6. https://doi.org/10.1093/femsec/fiaa067
- Rossmann M., Pérez-Jaramillo J.E., Kavamura V.N., Chiaramonte J. B., Dumack K., Fiore-Donno A.M. et al. // FEMS Microbiol. Ecol. 2020. V. 96. № 4. https://doi.org/10.1093/femsec/fiaa032
- Douglas A.J., Hug L.A., Katzenback B.A. // Microb. Ecol. 2020. V. 81. P. 78–92. https://doi.org/10.1007/s00248-020-01550-5
- Risely A. // J. Anim. Ecol. 2020. V. 89. № 7. P. 1549–1558. https://doi.org/10.1111/1365-2656.13229
- Schlatter D.C., Yin C., Hulbert S., Paulitz T. // Appl. Environ. Microbiol. 2019. V. 86. № 5. https://doi.org/10.1128/AEM.02135-19
- Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.C.C., Charles T. et al. // Microbiome. 2020. V. 8. № 1. P. 103. https://doi.org/10.1186/s40168-020-00875-0
- Velázquez-Sepúlveda I., Orozco-Mosqueda M.C., Prieto-Barajas C.M., Santoyo G. // Phyton. Int. J. Exp. Bot. 2012. V. 81. P. 81–87.
- Naz I., Mirza R.S., Bano A. // J. Anim. Plant Sci. 2014. V. 24. № 4. P. 1123–1134.
- Kuźniar A., Włodarczyk K., Grządziel J., Woźniak M., Furtak K., Gałązka A., Wolińska A. // Int. J. Mol. Sci. 2020. V. 21. № 13. P. 4634. https://doi.org/10.3390/ijms21134634
- Hone H., Mann R., Yang G., Kaur J., Tannenbaum I., Li T., Spangenberg G., Sawbridge T. // Sci Rep. 2021. V. 11. P. 11916. https://doi.org/10.1038/s41598-021-91351-8
- Timmusk S., Paalme V., Pavlicek T., Bergquist J., Vangala A., Danilas T., Nevo E. // PloS One. 2011. V. 6. № 3. P. e17968. https://doi.org/10.1371/journal.pone.0017968
- Safin R.I., Karimova L.Z., Nizamov R.M., Valiev A.R., Validov S.Z., Faizrakhmanov D.I. // Adv. Engin. Res. 2018. V. 151. P. 766–770. https://doi.org/10.2991/agrosmart-18.2018.143
Supplementary files
