Mechanisms of Growth Promotional and Protective Effects of Endophytic PGP-Bacteria in Wheat Plants Under the Impact of Drought (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The review is devoted to the analysis and systematization of modern data on the participation of endophytic plant growth-promoting (PGP) bacteria in the regulation of growth, development, yield formation, and stress resistance of cultivated plants, mainly spring wheat as the main bread crop. Presently known data on the interaction of plants with PGP-bacteria under normal and drought conditions are described. Particular attention is paid to the molecular mechanisms of regulation of plant metabolism by PGP-bacteria, as well as their role in reducing the negative effects of drought, achieved by modulating various processes in plants, for example, improving the supply of moisture and mineral nutrients, and activating the antioxidant and osmoprotective plant systems. A key role in the adaptation and resistance/tolerance of plants caused by PGP-bacteria are played by their ability to produce various metabolites with the properties of biologically active substances, including substances with antimicrobial and hormonal activity, enzymes and other compounds. Information about the endophytic microbiome of wheat is given, the elucidation of the role and functions of which in plant stress response and adaptation is necessary for the development of effective, safe strategies for their practical application in order to maximize the adaptation and productive potential of wheat under changing environmental conditions.

About the authors

О. V. Lastochkina

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences

Author for correspondence.
Email: oksana.lastochkina@ufaras.ru
Russia, 450054, Ufa

Ch. R. Allagulova

Institute of Biochemistry and Genetics – Subdivision of the Ufa Federal Research Centre
of the Russian Academy of Sciences

Email: oksana.lastochkina@ufaras.ru
Russia, 450054, Ufa

References

  1. Asseng S., Martre P., Maiorano A., Rötter R.P., O’Leary G.J., Fitzgerald G.J. et al. // Global. Change. Biol. 2019. V. 25. № 1. P. 155–173. https://doi.org/10.1111/gcb.14481
  2. Pequeno D.N., Hernandez-Ochoa I.M., Reynolds M., Sonder K., MoleroMilan A., Robertson R.D. et al. // Environ. Res. Lett. 2021. V. 16. № 5. P. 054070. https://doi.org/10.1088/1748-9326/abd970
  3. Shakirova F.M., Avalbaev A.M., Bezrukova M.V., Fatkhutdinova R.A., Maslennikova D.R., Yuldashev R.A., Lastochkina O.V. In: Phytohormones and Abiotic Stress Tolerance in Plants / Ed. N. Khan, R. Nazar, N. Iqbal, N. Anjum. Berlin, Heidelberg: Springer, 2012. 308 p. https://doi.org/10.1007/978-3-642-25829-9_9
  4. Kosova A., Varma A., Choudhary D.K. // Agric. Res. 2015. V. 4. № 1. P. 31–41. https://doi.org/10.3390/ijms160920913
  5. Food and Agriculture Organization of the United Nations (FAO). 2016. http://www.fao.org/3/a-i6030e.pdf (2016).
  6. Goswami M., Deka S. // Pedosphere. 2020. V. 30. № 1. P. 40‒61. https://doi.org/10.1016/S1002-0160(19)60839-8
  7. United State Department of Agriculture. Foreign Agricultural Service // Global Market Analysis: International Production Assessment Division (IPAD). 2020. https://ipad.fas.usda.gov/
  8. Ehrlich P.R., Wilson E.O. // Science. 1991. V. 253. № 5021. P. 758–762. https://doi.org/10.1126/science.253.5021.758
  9. Thrupp L.A. // Int. Aff. 2000. V. 76. № 2. P. 265–281. https://doi.org/10.1111/1468-2346.00133
  10. Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Rodrigues W. L., Santini J. M. K., Alves C.J. // Acta Agric. Scand. Soil Plant Sci. 2019. V. 69. P. 606–617. https://doi.org/10.1080/09064710.2019.1628293
  11. Dmytryk A., Michalak I., Wilk R., Chojnacka K., G’orecka H., G’orecki H. // Waste Biomass Valori. 2015. V. 6. P. 441–448. https://doi.org/10.1007/s12649-015-9363-6
  12. Lutts S., Benincasa P., Wojtyla Ł., Kubala S., Pace R., Lechowska K., Quinet M., Garnczarska M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique / Ed. S. Araujo, A. Balestrazzi. London, UK: IntechOpen, 2016. 212 p. https://doi.org/10.5772/64420
  13. Seifikalhor M., Hassani S.B., Aliniaeifard S. // J. Plant Growth Regul. 2020. V. 39. P. 1009–1021. https://doi.org/10.1007/s00344-019-10038-7
  14. Gebeyaw M. // Int. J. Appl. Agric. Sci. 2020. V. 6. № 6. P. 185–190. https://doi.org/10.11648/j.ijaas.20200606.14
  15. Singh S., Singh U.B., Malaviya D., Paul S., Sahu P.K., Trivedi M., Paul D., Saxena A.K. // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 1396. https://doi.org/10.3390/ijerph17041396
  16. Lastochkina O.V., Aliniaeifard S., Seifikalhor M., Yuldashev R., Pusenkova L., Garipova S. In: Wheat Production in Changing Environments /Ed. M. Hasanuzzaman, K. Nahar, M. Hossain. Singapore: Springer, 2019. p. 579–614.https://doi.org/10.1007/978-981-13-6883-7_23
  17. Conrath U., Beckers G.J.M., Langenbach C.J.G., Jaskiewicz M.R. // Annu. Rev. Phytopathol. 2015. V. 53. P. 97–119. https://doi.org/10.1146/annurev-phyto-080614-120132
  18. Pastor V., Luna E., Mauch-Mani B., Ton J., Flors V. // Environ. Exp. Bot. 2013. V. 94. P. 45–56. https://doi.org/10.1016/j.envexpbot.2012.02.013
  19. Balmer A., Pastor V., Gamir J., Flors V., Mauch-Mani B. // Tr. Plant Sci. 2015. V. 20. P. 443–452. https://doi.org/10.1016/j.tplants.2015.04.002
  20. Hallmann J., Quadt-Hallmann A., Mahaffee W.F., Kloepper J.W. // Can. J. Microbiol. 1997. V. 43. № 10. P. 895‒914.https://doi.org/10.1139/m97-131
  21. Sood G., Kaushal R., Sharma M. // Vegetos. 2020. V. 33. № 4. P. 782–792. https://doi.org/10.1007/s42535-020-00149-y
  22. Van Loon L.C. // Eur. J. Plant Pathol. 2007. V. 119. P. 243–254. https://doi.org/10.1007/978-1-4020-6776-1_2
  23. Akram W., Anjum T., Ali B., Ahmad A. // Int. J. Agric. Biol. 2013. V. 15. № 6. P. 1289–1294.
  24. Maksimov I.V., Veselova S.V., Nuzhnaya T.V., Sarvarova E.R., Khairullin R.M. // Russ. J. Plant Physiol. 2015. V. 62. № 6. P. 715–726. https://doi.org/10.1134/S1021443715060114
  25. Ma Y. Plant–microbe Interactions in Agro-ecological Perspectives / Ed. D. Singh, H. Singh, R. Prabha, Singapore: Springer, 2017. 657 p. https://doi.org/10.1007/978-981-10-6593-4_4
  26. Dimkpa C., Weinand T., Asch F. // Plant Cell Environ. 2009. V. 32. № 12. P. 1682–1694. https://doi.org/10.1111/j.1365-3040.2009.02028.x
  27. Abdel-Rahman S., Abdel-Kader A.A.S., Khalil S.E. // Nat. Sci. 2011. V. 9. P. 31–36.
  28. Baez-Rogelio A., Morales-García Y.E., Quintero-Hernández V., Muñoz-Rojas J. // Microb. Biotechnol. 2016. V. 10. № 1. P. 19–21.https://doi.org/10.1111/1751-7915.12448
  29. Barnawal D., Bharti N., Pandey S.S., Pandey A., Chanotiya C.S., Kalra A. // Physiol. Plant. 2017. V. 161. № 4. P. 502–514. https://doi.org/10.1111/ppl.12614
  30. Numan M., Bashir S., Khan Y., Mumtaz R., Shinwari Z.K., Khan A. L., Khan A., AL-Harrasi A. // Microbiol. Res. 2018. V. 209. P. 21–32. https://doi.org/10.1016/j.micres.2018.02.003
  31. Singh M., Tiwari N. // Comm. Integr. Biol. 2021. V. 14. № 1. P. 136–150.https://doi.org/10.1080/19420889.2021.1937839
  32. Arzanesh M.H., Alikhani H.A., Khavazi K., Rahimian, H.A., Miransari M. // World J. Microbiol. Biotechnol. 2011. V. 27. № 2. P. 197–205. https://doi.org/10.1007/s11274-010-0444-1
  33. Cherif H., Marasco R., Rolli E., Ferjani R., Fusi M., Soussi A. et al. // Env. Microbiol. Rep. 2015. V. 7. № 4. P. 668–678. https://doi.org/10.1111/1758-2229.12304
  34. Amna S., Din Y., Sarfraz B., Xia Y., Kamran M.A., Javed M.T. et al. // Eco. Toxicol. Environ. Saf. 2019. V. 183. P. 109466. https://doi.org/10.1016/j.ecoenv.2019.109466
  35. Kasim W.A., Osman M.E.H., Omar M.N., Salama S. // Bull. Natl. Res. Cent. 2021. V. 45. № 95. P. 1–14. https://doi.org/10.1186/s42269-021-00546-6
  36. Rashid U., Yasmin H., Hassan M.N., Naz R., Nosheen A., Sajjad M. et al. // Plant. Cell. Rep. 2022. V. 41. P. 1–21. https://doi.org/10.1007/s00299-020-02640-x
  37. Compant S., Samad A., Faist H., Sessitsch A. // J. Adv. Res. 2019. V. 19. P. 29–37. https://doi.org/10.1016/j.jare.2019.03.004
  38. Rana K.L., Kour D., Kaur T., Sheikh I., Yadav A.N., Kumar V. et al. // Proc. Natl. Acad. Sci, India. Sect. B: Biol. Sci. 2020. V. 90. № 5. P. 969–979. https://doi.org/10.1007/s40011-020-01168-0
  39. Kavamura V.N., Mendes R., Bargaz A., Mauchline T.H. // Comput. Struct. Biotechnol. J. 2021. V. 19. P. 1200–1213. https://doi.org/10.1016/j.csbj.2021.01.045
  40. Pandey P.K., Singh M.C., Singh S.S., Singh A.K., Kumar M., Pathak M.M. et al. // Int. J. Curr. Microbiol. App. Sci. 2017. V. 6. № 2. P. 11–21. https://doi.org/10.20546/ijcmas.2017.602.002
  41. Yang J., Kloepper J.W., Ryu C.M. // Trend. Plant. Sci. 2009. V. 14. № 1. P. 1–4. https://doi.org/10.1016/j.tplants.2008.10.004
  42. Bokhari A., Essack M., Lafi F.F., Andres-Barrao C., Jalal R., Alamoudi S. et al. // Sci. Rep. 2019. V. 9. P. 18154.https://doi.org/10.1038/s41598-019-54685-y
  43. Bukhat S., Imran A., Javaid S., Shahid M., Majeed A., Naqqash T. // Microbiol. Res. 2020. V. 238. P. 126486. https://doi.org/10.1016/j.micres.2020.126486
  44. Lastochkina O.V., Baymiev An., Shayahmetova A., Garshina D., Koryakov I., Shpirnaya I. et al. // Plants. 2020. V. 9. № 1. P. 76. https://doi.org/10.3390/plants9010076
  45. Васильева Е.Н., Ахтемова Г.А., Жуков В.А., Тихонович И.А. // Экол. генетика. 2019. V. 17. № 1. P. 19–32. https://doi.org/10.17816/ecogen17119-32
  46. Žiarovská J., Medo J., Kyseľ M., Zamiešková L., Kačániová M. // Plants. 2020. V. 9. № 2. P. 266. https://doi.org/10.3390/plants9020266
  47. Kazi N., Deaker R., Wilson N., Muhammad K., Trethowan R. // Field Crops Res. 2016. V. 196. P. 368–378. https://doi.org/10.1016/j.fcr.2016.07.012
  48. Schlemper T.R., Dimitrov M.R., Gutierrez F.A.S., van Veen J.A., Silveira A.P., Kuramae E.E. // Peer J. 2018. V. 6. P. e5346. https://doi.org/10.7717/peerj.5346
  49. Lastochkina O.V., Garshina D., Ivanov S., Yuldashev R., Khafizova R., Allagulova Ch. et al. // Plants. 2020a. V. 9. № 12. P. 1810. https://doi.org/10.3390/plants9121810
  50. El-Megeed A., Fayrouz H., Mohiy M. // Egyptian J. Bot. 2022. V. 62. № 1. P. 275–290.
  51. Ishak Z., Mohd Iswadi M.K., Russman Nizam A.H., Ahmad Kamil M. J., Ernie Eileen R.R., Wan Syaidatul A., Ainon H. // Malays. Cocoa J. 2016. V. 9. № 1. P. 127‒133.
  52. Saikia J., Sarma R.K., Dhandia R., Yadav A., Bharali R., Gupta V.K., Saikia R. // Sci. Rep. 2018. V. 8. № 1. P. 3560. https://doi.org/10.1038/s41598-018-21921-w
  53. Boleta E.H.M., Galindo F.S., Jalal A., Santini J.M.K., Rodrigues W.L., Lima B.H.D. et al. // Front. Sustain. Food Syst. 2020. V. 4. P. 607262. https://doi.org/10.3389/fsufs.2020.607262
  54. Naqqash T., Fatima M., Rehman-ur-Saif., Bukhat S., Shahid M., Shabir C. et al. // J. Plant. Growth. Regul. 2021. P. 1–15. https://doi.org/10.1007/s00344-021-10519-8
  55. Федоренко В.Ф., Завалина А.А., Милащенко Н.З. Научные основы производства высококачественного зерна пшеницы. М.: ФГБНУ Росинформагротех, 2018. 396 с. https://doi.org/10.25930/skc8-gc14
  56. Di Benedetto N.A., Corbo M.R., Campaniello D., Cataldi M.P., Bevilacqua A., Sinigaglia M., Flagella Z. // AIMS Microbiol. 2017. V. 3. № 3. P. 413–434. https://doi.org/10.3934/microbiol.2017.3.413
  57. Lastochkina O., Pusenkova L., Yuldashev R., Yuldashev R., Babaev M., Garipova S. et al. // Plant. Physiol. Biochem. 2017. V. 121. P. 80–88. https://doi.org/10.1016/j.plaphy.2017.10.020
  58. Пищик В.Н., Воробьев Н.И., Моисеев К.Г., Свиридова О.В., Сурин В.Г. // Почвоведение. 2015. № 1. С. 87–94. https://doi.org/10.7868/S0032180X1501013X
  59. Fukami J., Nogueira M.A., Araujo R.S., Hungria M. // AMB Express. 2016. V. 6. № 3. P. 3–16. https://doi.org/10.1186/s13568-015-0171-y
  60. Fukami J., Ollero F.J., Megías M., Hungria M. //AMB Express 2017. V. 7. P. 153–163. https://doi.org/10.1186/s13568-017-0453-7
  61. Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santin J.M.K., Alves C.J., Ludkiewicz M.G.Z. // Res. Agropec. Bras. 2017. V. 52. № 9. P. 794–805.
  62. Galindo F.S., Teixeira Filho M.C.M., Buzetti S., Santini J.M., Montaniri R., Freitas L.A., Rodrigues W.L. // Commun. Soil Sci. Plant Anal. 2019. V. 50. P. 2429–2441. https://doi.org/10.1080/00103624.2019.1667369
  63. Ardakani M.R., Mazaheri D., Mafakheri S., Moghaddam A. // Physiol. Mol. Biol. Plants. 2011. V. 17. № 2. P. 181–192. https://doi.org/10.1007/s12298-011-0065-7
  64. Rodríguez H., Fraga R., Gonzalez T., Bashan Y. // Plant. Soil. 2006. V. 287. P. 15–21. https://doi.org/10.1007/s11104-006-9056-9
  65. Karimzadeh J., Alikhani H.A., Etesami H., Pourbabaei A.A. // J. Plant. Growth. Regul. 2021. V. 40. № 1. P. 162–178. https://doi.org/10.1007/s00344-020-10087-3
  66. Scanlan C.A., Bell R.W., Brennan R.F. Simulating wheat growth response to potassium availability under field conditions in sandy soils. II. Effect of subsurface potassium on grain yield response to potassium fertiliser // Field Crops Res. 2015. V. 178. P. 125–134. https://doi.org/10.1016/j.fcr.2015.03.019
  67. Chandra D., Srivastava R., Gupta V.V.S.R., Franco C.M., Paasricha N., Saifi S.K., Sharma A.K. // Plant. Soil. 2019. V. 441. № 1–2. P. 261–281. https://doi.org/10.1007/s11104-019-04115-9
  68. Złoch M., Thiem D., Gadzała-Kopciuch R., Hrynkiewicz K. // Chemosphere. 2016. V. 156. P. 312–325. https://doi.org/10.1016/j.chemosphere.2016.04.130
  69. Sadeghi A., Karimi E., Dahaji P.A., Javid, M.G., Dalvand, Y., Askari H // World. J. Microbiol. Biotechnol. 2012. V. 28. № 4. P. 1503–1509. https://doi.org/10.1007/s11274-011-0952-7
  70. Saha M., Sarkar S., Sarkar B., Sharma, B.K., Bhattacharjee S., Tribedi P. // Environ. Sci. Pollut. Res. 2016. V. 23. №. 5. P. 3984–3999. https://doi.org/10.1007/s11356-015-4294-0
  71. Albelda-Berenguer M., Monachon M., Joseph E. // Adv. Appl. Microbiol. 2019. V. 106. P. 193–225. https://doi.org/10.1016/bs.aambs.2018.12.001
  72. Шакирова Ф.М. Неспецифическая устойчивость растений к стрессовым факторам и ее регуляция. Уфа: Гилем, 2001. 160 с.
  73. Sgroy V., Cassán F., Masciarelli O.F., Del Papa M.F., Lagares A., Luna V. // Appl. Microbiol. Biotechnol. 2009. V. 85. № 2. P. 371–381. https://doi.org/10.1007/s00253-009-2116-3
  74. Кудоярова Г.Р., Курдиш И.К., Мелентьев А.И. // Изв. УфНЦ РАН. 2011. №. 3–4. С. 5–15.
  75. Pankievicz V.C.S., do Amaral F.P., Santos K.F.D.N., Agtuca B., Xu Y., Schueller M. J., Ferrieri R.A. // Thy. Plant. J. 2015. V. 81. № 6. P. 907–919. https://doi.org/10.1111/tpj.12777
  76. Wang C.J., Yang W., Wang C.J., Gu C., Niu D.D., Liu H.X., Guo J.H. // PLoS One. 2012. V. 7. № 12. P. e52565.https://doi.org/10.1371/journal.pone.0052565
  77. Wang L., Ruan Y.L. // Front. Plant Sci. 2013. V. 4. P. 163. https://doi.org/10.3389/fpls.2013.00163
  78. Poupin M.J., Greve M., Carmona V., Pinedo I. // Front. Plant Sci. 2016. V. 7. P. 492. https://doi.org/10.3389/fpls.2016.00492
  79. Khan N., Ali S., Tariq H., Latif S., Yasmin H., Mehmood A., Shahid M. A. // Agronomy. 2020. V. 10. № 11. P. 1683. https://doi.org/10.3390/agronomy10111683
  80. Egamberdieva D., Kucharova Z. // Biol. Fertil. Soils. 2009. V. 45. № 6. P. 563–571. https://doi.org/10.1007/s00374-009-0366-y
  81. Creus C.M., Sueldo R.J., Barassi C.A. // Can. J. Bot. 2004. V. 82. № 2. P. 273–281. https://doi.org/10.1139/b03-119
  82. El-Akhdar I.A., Elshikh M., Allam N.G., Kamal F., Abou-Shanab R., Staehelin C. // Environ. Biodivers. Soil Secur. 2019. V. 3. P. 15–17. https://doi.org/10.21608/jenvbs.2019.16428.1069
  83. Ali S., Khan N. // Microbiol. Res. 2021. V. 249. P. 126771. https://doi.org/10.1016/j.micres.2021.126771
  84. Glick B.R. // Scientifica. 2012. P. 963401. https://doi.org/10.6064/2012/963401
  85. Мартыненко Е.В., Архипова Т.Н. // Агрохимия. 2010. № 8. С. 35–42.
  86. Xu J., Li X., Luo L. // Appl. Environ. Microbiol. 2012. V. 78. № 22. P. 8056–8061. https://doi.org/10.1128/AEM.01276-12
  87. Егоршина А.А., Хайруллин Р.М., Сахабутдинова А.Р., Лукьянцев М.А. // Физ. раст. 2012. Т. 59. №. 1. С. 148.
  88. Tsukanova K.A., Meyer J.J.M., Bibikova T.N. // S. Afr. J. Bot. 2017. V. 113. P. 91–102. https://doi.org/10.1016/j.sajb.2017.07.007
  89. Nett R.S., Montanares M., Marcassa A., Lu X., Nagel R., Charles T.C., Peters R.J. // Nat. Chem. Biol. 2017. V. 13. № 1. P. 69–74. https://doi.org/10.1038/nchembio.2232
  90. Bastián F., Cohen A., Piccoli P., Luna V., Baraldi R., Bottini R. // Plant. Growth. Regul. 1998. V. 24. № 1. P. 7–11. https://doi.org/10.1023/A:1005964031159
  91. Atzorn R., Crozier A., Wheeler C.T., Sandberg G. // Planta. 1988. V. 175. № 4. P. 532–538. https://doi.org/10.1007/BF00393076
  92. Khan A.L., Waqas M., Kang S., Al-Harrasi A., Hussain J., Al-Rawahi A., Lee I.J. // J. Microbiol. 2014. V. 52. № 8. P. 689–695. https://doi.org/10.1007/s12275-014-4002-7
  93. Huang G.T., Ma S.L., Bai L.P., Zhang L., Ma, H., Jia P., Guo Z.F. // Mol. Biol. Rep. 2012. V. 39. № 2. P. 969–987. https://doi.org/10.1007/s11033-011-0823-1
  94. Cohen A.C., Travaglia C.N., Bottini R., Piccoli P.N. // Bot. 2009. V. 87. № 5. P. 455–462. https://doi.org/10.1139/B09-023
  95. Cohen A.C., Bottini R., Pontin M., Berli F.J., Moreno D., Boccanlandro H., Piccoli P.N. // Physiol. Plant. 2015. V. 153. № 1. P. 79–90. https://doi.org/10.1111/ppl.12221
  96. Bresson J., Varoquaux F., Bontpart T., Touraine B., Vile D. // New Phytol. 2013. V. 200. № 2. P. 558–569. https://doi.org/10.1111/nph.12383
  97. Park J.W., Balaraju K., Kim J.W., Lee S.W., Park K. // Biol. Control. 2013. V. 65. № 2. P. 246–257. https://doi.org/10.1016/j.biocontrol.2013.02.002
  98. Salomon M.V., Bottini R., de Souza F.G.A., Cohen A.C., Moreno D., Gil M., Piccoli P. // Physiol. Plant. 2014. V. 151. № 4. P. 359–374. https://doi.org/10.1111/ppl.12117
  99. Shahzad R., Khan A.L., Saqib B., Waqas M., Kang S.M., Lee I.J. // Environ. Exp. Botany. 2017. V. 136. P. 68–77. https://doi.org/10.1016/j.envexpbot.2017.01.010
  100. Li Y., Xu S., Gao J., Pan S., Wang G. // Plant Growth Regul. 2016. V. 78. P. 43–55. https://doi.org/10.1007/s10725-015-0073-7
  101. Naing A.H., Maung T.T., Kim C.K. // Physiol. Plant. 2021. V. 173. № 4. P. 1992–2012. https://doi.org/10.1111/ppl.13545
  102. Forchetti G., Masciarelli O., Alemano S., Alvarez D., Abdala G. // Appl. Microbiol. Biotechnol. 2007. V. 76. № 5. P. 1145–1152. https://doi.org/10.1007/s00253-007-1077-7
  103. Chourdhary D., Johri B. // Microbiol. Res. 2009. V. 164. № 5. P. 493–513. https://doi.org/10.1016/j.micres.2008.08.007
  104. García-Gutiérrez L., Zeriouh H., Romero D., Cubero J., de Vicente A., Pérez-García A. // Microb. Biotechnol. 2013. V. 6. № 3. P. 264–274. https://doi.org/10.1111/1751-7915.12028
  105. Niu D.D., Liu H.X., Jiang C.H., Jiang C.H., Zhang W.Z., Wang Y.P., Guo J.H. // Mol. Plant Microb. Inter. 2011. V. 24 № 5. P. 533–542. https://doi.org/10.1094/MPMI-09-10-0213
  106. Egamberdieva D., Wirth S.J., Alqarawi A.A., Abd Allah E.F., Hashem A. // FMC. 2017. V. 8. P. 2104. https://doi.org/10.3389/fmicb.2017.02104
  107. Shakirova F.M., Sakhabutdinova A.R., Bezrukova M., Fatkhutdinova R.A., Fatkhutdinova D.R. // Plant. Sci. 2003. V. 164. P. 317–322. https://doi.org/10.1016/S0168-9452(02)00415-6
  108. Singh U.P., Sarma B.K., Singh D.P. // Curr. Microbiol. 2003. V. 46. № 2. P. 131–140. https://doi.org/10.1007/s00284-002-3834-2
  109. Vlot A.C., Dempsey D.A., Klessig D.F. // Annu. Rev. Phytopathol. 2009. V. 47. P. 177–206. https://doi.org/10.1146/annurev.phyto.050908.135202
  110. Wu L., Huang Z., Li X., Ma L., Gu Q., Wu H., Gao X. // Front. Microbiol. 2018. V. 9. P. 847. https://doi.org/10.3389/fmicb.2018.00847
  111. Panpatte D.G., Shukla Y.M., Shelat H.N., Vyas, R.V., Jhala Y.K. In: Microorganisms for Green Revolution / Ed. D.G. Panpatte, Y.K. Jhala, R.V. Vyas, H.N. Shelat. Singapore: Springer, 2017. 443 p. https://doi.org/10.1007/978-981-10-6241-4
  112. Chiappero J., Cappellari L. del R., Alderete L.G.S., Palermo T.B., Banchio E. // Ind. Crop. Prod. 2019. V. 139. P. 111553. https://doi.org/10.1016/j.indcrop.2019.111553
  113. Vaishnav A., Varma A., Tuteja N., Choudhary D.K. / Ed. D.K. Choudhary, A.K. Sharma, P. Agarwal, A. Varma, N. Tuteja. Singapore: Springer, 2017. 373 p. https://doi.org/10.1007/978-981-10-5553-9
  114. ALKahtani M.D.F., Fouda A., Attia K.A. // Agronomy. 2020. V. 10. № 9. P. 1325. https://doi.org/10.3390/agronomy10091325
  115. Park Y.S., Dutta S., An M., Raaijmakers J.M., Park K. // Biochem. Biophys. Res. Comm. 2015. V. 461. № 2. P. 361–365. https://doi.org/10.1016/j.bbrc.2015.04.039
  116. Tahir H.A.S., Gu Q., Wu H., Raza W., Hanif A., Wu L., Gao X. // Front. Microbiol. 2017. V. 8. P. 171. https://doi.org/10.3389/fmicb.2017.00171
  117. Lemfack M.C., Nickel J., Dunkel M., Preissner R., Piechulla B. // Nucleic Acids Res. 2014. V. 42. № 1. P. 744–748. https://doi.org/10.1093/nar/gkt1250
  118. Bitas V., Kim H.S., Bennett J.W., Kang S. // Mol. Plant. Microbe. Interact. 2013. V. 26. № 8. P. 835–843. https://doi.org/10.1094/MPMI-10-12-0249-CR
  119. Audrain B., Mohamed A.F., Ch.-M. Riu, J.-M. Ghigo // FEMS Microbiol. Rev. 2015. V. 39. № 2. P. 222–233. https://doi.org/10.1093/femsre/fuu013
  120. Niinemets Ü. // Trends Plant Sci. 2010. V. 15. № 3. P. 145–153. https://doi.org/10.1016/j.tplants.2009.11.008
  121. Timmusk S., El-Daim Abd I., Copolovici L., Copolovici L., Tanilas T., Kännaste A., Niinemets Ü. // PLoS One. 2014. V. 9. № 5. P. e96086.https://doi.org/10.1371/journal.pone.0096086
  122. Cho S.M., Kang B.R., Han S.H., Anderson A.J., Park J.Y., Lee Y.H., Kim Y.C // APS Pub. 2008. V. 21. № 8. P. 1067–1075. https://doi.org/10.1094/MPMI-21-8-1067
  123. Bhattacharyya D., Yu S.M., Lee Y.H. // Plant. Growth. Regul. 2015. V. 75. № 1. P. 297–306. https://doi.org/10.1007/s10725-014-9953-5
  124. Bhattacharyya D., Lee Y.H. // J. Plant. Physiol. 2017. V. 214. P. 64–73. https://doi.org/10.1016/j.jplph.2017.04.002
  125. Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. // Microbiol. Res. 2016. V. 184. P. 13–24. https://doi.org/10.1016/j.micres.2015.12.003
  126. Chen Y., Gozzi R., Yan F., Chai Y. // ASM J. 2015. V. 6. № 3. P. e00392. https://doi.org/10.1128/mBio.00392-15
  127. Ryu C.M., Farag M.A., Hu C.H., Reddy M.S., Kloepper J.W., Paré P.W. // Plant Physiol. 2004. V. 134. № 3. P. 1017–1026. https://doi.org/10.1104/pp.103.026583
  128. Raza W., Wang J., Wu Y., Ling N., Wei Z., Huang Q., Shen Q. // Appl. Microbiol. Biotechnol. 2016. V. 100. № 17. P. 7639–7650. https://doi.org/10.1007/s00253-016-7584-7
  129. Vardharajula S., Zulfikar A.S., Grover M., Reddy G., Bandi V. // J. Plant. Interact. 2011. V. 6. № 1. P. 1–14. https://doi.org/10.1080/17429145.2010.535178
  130. Dakora F.D., Matiru V.N., Kanu A.S. // Front. Plant Sci. 2015. V. 6. P. 700. https://doi.org/10.3389/fpls.2015.00700
  131. Tanaka K., Cho S.H., Lee H., Pham A.Q., Batek J.M., Cui S., Stacey G. // J. Exp. Bot. 2015. V. 66. № 19. P. 5727–5738. https://doi.org/10.1093/jxb/erv260
  132. Bramhachari P.V., Nagaraju G.P., Kariali E. In Role of Rhizospheric Microbes in Soil /Ed. V.S. Meena. Singapore: Springer, 2018. 400 p. https://doi.org/10.1007/978-981-10-8402-7
  133. Talebi Atouei M., Pourbabaee A.A., Shorafa M. // Iranian J. Sci. Technol. Trans. A. 2019. V. 43. № 4. P. 2725–2733. https://doi.org/10.1007/s40995-019-00753-x
  134. Alami Y., Achouak W., Marol C., Heulin T. // Appl. Environ. Microbiol. 2000. V. 66. № 8. P. 3393–3398. https://doi.org/10.1128/AEM.66.8.3393-3398.2000
  135. Awasthi S., Srivastava P., Mishra P.K. // Agric. Res. Technol. 2017. V. 8. № 2. P. 8–10. https://doi.org/10.19080/ARTOAJ.2017.08.555731
  136. Gontia-Mishra I., Sapre S., Sharma A., Tiwari S. // Plant. Biol. 2016. V. 18. № 6. P. 992–1000. https://doi.org/10.1111/plb.12505
  137. Amellal N., Burtin G., Bartoli F., Heulin T. // Appl. Environ. Microbiol. 1998. V. 64. № 10. P. 3740–3747. https://doi.org/10.1128/AEM.64.10.3740-3747.1998
  138. Subramanian S., Smith D.L. // Front. Plant. Sci. 2015. V. 6. P. 909. https://doi.org/10.3389/fpls.2015.00909
  139. Глобальный климат и почвенный покров России: проявления засухи, меры предупреждения, борьбы, ликвидация последствий и адаптационные мероприятия (сельское и лесное хозяйство). / Ред. Р.С.-Х. Эдельгериев. М.: OOO “Изд. МБА”, 2021. 700 с.
  140. Hunt E., Femia F., Werrell C., Christian J.I., Otkin J.A., Basara J., McGaughey K. // Weather. Clim. Extremes. 2021. V. 34. P. 100383. https://doi.org/10.1016/j.wace.2021.100383
  141. Okuyama L.A., Federizzi L.C., Barbosa N.J.F // Ciênc. Rural. 2004. V. 34. № 6. P. 1701–1708. https://doi.org/10.1590/S0103-84782004000600006
  142. Araus J.L., Slafer G.A., Royo C., Serret M.D. // Crit. Rev. Plant Sci. 2008. V. 27. № 6. P. 377–412. https://doi.org/10.1080/07352680802467736
  143. Khan M.Y., Zahir Z.A., Asghar H.N., Waraich E.A. // Pak. J. Bot. 2017. V. 49. № 4. P. 1541–1551.
  144. Çakmakçı R., Turan M., Kıtır N., Güneş, A., Nikerel E., Özdemir B.S., Mokhtari N.E.P. In: Wheat Improvement, Management and Utilization /Ed. R. Wanyera, J. Owuoche. London, UK: IntechOpen Limited, 2017. 394 p. https://doi.org/10.5772/63694
  145. Chakraborty U., Chakraborty B.N., Chakraborty A.P., Dey P.L. // World J. Microbiol. Biotechnol. 2013. V. 29. № 5. P. 789–803. https://doi.org/10.1007/s11274-012-1234-8
  146. Alvarez M.I., Sueldo R.J., Barassi C.A. // Cereal. Res. Commun. 1996. V. 24. № 1. P. 101–107.
  147. Hussain M.B., Zahir Z.A., Asghar H.N., Asghar M. // Int. J. Agric. Biol. 2014. V. 16. P. 3‒13.
  148. Chen C., Xin K., Liu H., Cheng J., Shen X., Wang Y., Zhang L. // Sci. Rep. 2017. V. 7. № 1. P. 41564. https://doi.org/10.1038/srep41564
  149. Vacheron J., Desbrosses G., Bouffaud M.L., Touraine B., Moënne-Loccoz Y., Muller D., Prigent-Combaret C. // Front. Plant Sci. 2013. V. 4. P. 356. https://doi.org/10.3389/fpls.2013.00356
  150. Ullah A., Nisar M., Ali H., Hazrat A., Hayat K., Keerio A.A., Yang X. // Appl. Microbiol. Biotechnol. 2019. V. 103. P. 7385‒7397. https://doi.org/10.1007/s00253-019-10045-4
  151. Kasim W.A., Osman M.E., Omar M.N., El-Daim A., Islam A., Bejai S., Meijer J. // J. Plant. Growth. Regul. 2013. V. 32. P. 122–130.https://doi.org/10.1007/s00344-012-9283-7
  152. El-Afry M.M. // Acta. Biol. Szeged. 2012. V. 56. № 2. P. 165–174.
  153. Pereyra M.A., García P., Colabelli M.N., Barassi C.A., Creus C.M. // Appl. Soil. Eco. 2012. V. 53. P. 94–97. https://doi.org/10.1016/j.apsoil.2011.11.007
  154. Furlan F., Saatkamp K., Volpiano C.G., de Assis Franco F., dos Santos M.F., Vendruscolo, E.C.G., da Costa A.C.T. // Sci. Agrar. 2017. V. 18. № 2. P. 104–113.
  155. Yaghoubi Khanghahi M.Y., Leoni B., Crecchio C. // Acta. Physiol. Plant. 2021. V. 43. P. 123. https://doi.org/10.1007/s11738-021-03289-z
  156. Naveed M., Hussain M.B., Zahir Z.A., Mitter B., Sessitsch A. // Plant Growth Regul. 2014. V. 73. № 2. P. 121–131. https://doi.org/10.1007/s10725-013-9874-8
  157. Nemati A., Sedghi M. // J. Crop Prod. 2022. V. 13. № 4. P. 87–110. https://doi.org/10.22069/EJCP.2021.18408.2364
  158. Maslennikova D., Lastochkina O. // Plants. 2021. V. 10. P. 2557. https://doi.org/10.3390/plants10122557
  159. Мерзляк М.Н. // Соросовский Образ. Журн. 1999. Т. 9. С. 20–26.
  160. Колупаев Ю.Е., Карпец Ю.В., Ястреб Т.О., Луговая А.А. // Вісн. Харків. нац. аграрy. ун-ту. Сер. Біологія. 2016. Т. 1. № 37. С. 42–62.
  161. Kaushal M., Wani S.P. // Agriculture. Ecosyst. Env. 2016. V. 231. P. 68–78. https://doi.org/10.1016/j.agee.2016.06.031
  162. Яруллина Д.Р., Асафова Е.В., Картунова Ю.Е., Зиятдинова Г.К., Ильинская О.Н. // Прикл. биохимия микробиология. 2014. Т. 50. № 2. С. 189–192. https://doi.org/10.7868/S0555109914020196
  163. Ullah S., Bano A. // Can. J. Microbiol. 2015. V. 61. № 4. P. 307–313. https://doi.org/10.1139/cjm-2014-0668
  164. Khalafallah A.A., Abo-Ghalia H.H. // J. Appl. Sci. Res. 2008. V. 4. № 5. P. 559–569.
  165. Chaves M.M., Maroco J.P., Pereira J.S. // Funct. Plant Biol. 2003. V. 30. № 3. P. 239–264. https://doi.org/10.1071/FP02076
  166. Чжоу К., Юй Б.Д. // Физиология растений. 2009. Т. 56. № 5. С. 751–758.
  167. Sandhya V.D., Ali S., Grover M., Reddy G., Venkateswarlu B. // Plant. Growth. Regul. 2010. V. 62. № 1. P. 21–30.
  168. Jogawat A. In: Molecular Plant Abiotic Stress: Biology and Biotechnology /Eds. A. Roychoudhury, D.K. Tripathi. Willy, 2019. P. 91‒97. https://doi.org/10.1002/9781119463665
  169. Paul D., Nair S. // J. Basic. Microbiol. 2008. V. 48. № 5. P. 378–384. https://doi.org/10.1002/jobm.200700365
  170. Ilyas N., Mumtaz K., Akhtar N., Yasmin H., Sayyed R.Z., Khan W., Ali Z. // Sustainability. 2020. V. 12. № 21. P. 8876. https://doi.org/10.3390/su12218876
  171. Gusain Y.S., Singh U.S., Sharma A.K. // Afr. J. Biotechnol. 2015. V. 14. № 9. P. 764‒773. https://doi.org/10.5897/AJB2015.14405
  172. Shintu P.V., Jayaram K.M. // Trop. Plant. Res. 2015. V. 2. P. 17–22.
  173. Camaille M., Fabre N., Clément C., Ait Barka E. // Microorganisms. 2021. V. 9. № 4. P. 687. https://doi.org/10.3390/microorganisms9040687
  174. Suárez R., Wong A., Ramírez M., Barraza A., Orozco M.D.C., Cevallos M.A., Iturriaga G. // Mol. Plant Microbe Interact. 2008. V. 21. № 7. P. 958–966. https://doi.org/10.1094/MPMI-21-7-0958
  175. Forni C., Duca D., Glick B.R. // Plant Soil. 2017. V. 410. №. 1–2. P. 335–356. https://doi.org/10.1007/s11104-016-3007-x
  176. Toju H., Peay K.G., Yamamichi M. // Nat. Plant. 2018. V. 4. P. 247–257. https://doi.org/10.1038/s41477-018-0139-4
  177. Lahti L., Shetty S., Blake T., Salojarvi J. // Version. 2017. V. 1. № 5. P. 28.
  178. Shade A., Stopnisek N. // Curr. Opin. Microbiol. 2019. V. 49. P. 50–58. https://doi.org/10.1016/j.mib.2019.09.008
  179. Cernava T., Erlacher A., Soh J., Sensen C.W., Grube M., Berg G. // Microbiome. 2019. V. 7. P. 13. https://doi.org/10.1186/s40168-019-0624-7
  180. Kavamura V.N., Robinson R.J., Hayat R., Clark I. M., Hughes D., Rossmann M., Auchline T.H. // Front. Microbiol. 2019. V. 10. P. 2625. https://doi.org/10.3389/fmicb.2019.02625
  181. Simonin M., Dasilva C., Terzi V., Ngonkeu E. L., Diouf D., Kane A. et al. // FEMS Microbiol. Ecol. 2020. V. 96. № 6. https://doi.org/10.1093/femsec/fiaa067
  182. Rossmann M., Pérez-Jaramillo J.E., Kavamura V.N., Chiaramonte J. B., Dumack K., Fiore-Donno A.M. et al. // FEMS Microbiol. Ecol. 2020. V. 96. № 4. https://doi.org/10.1093/femsec/fiaa032
  183. Douglas A.J., Hug L.A., Katzenback B.A. // Microb. Ecol. 2020. V. 81. P. 78–92. https://doi.org/10.1007/s00248-020-01550-5
  184. Risely A. // J. Anim. Ecol. 2020. V. 89. № 7. P. 1549–1558. https://doi.org/10.1111/1365-2656.13229
  185. Schlatter D.C., Yin C., Hulbert S., Paulitz T. // Appl. Environ. Microbiol. 2019. V. 86. № 5. https://doi.org/10.1128/AEM.02135-19
  186. Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.C.C., Charles T. et al. // Microbiome. 2020. V. 8. № 1. P. 103. https://doi.org/10.1186/s40168-020-00875-0
  187. Velázquez-Sepúlveda I., Orozco-Mosqueda M.C., Prieto-Barajas C.M., Santoyo G. // Phyton. Int. J. Exp. Bot. 2012. V. 81. P. 81–87.
  188. Naz I., Mirza R.S., Bano A. // J. Anim. Plant Sci. 2014. V. 24. № 4. P. 1123–1134.
  189. Kuźniar A., Włodarczyk K., Grządziel J., Woźniak M., Furtak K., Gałązka A., Wolińska A. // Int. J. Mol. Sci. 2020. V. 21. № 13. P. 4634. https://doi.org/10.3390/ijms21134634
  190. Hone H., Mann R., Yang G., Kaur J., Tannenbaum I., Li T., Spangenberg G., Sawbridge T. // Sci Rep. 2021. V. 11. P. 11916. https://doi.org/10.1038/s41598-021-91351-8
  191. Timmusk S., Paalme V., Pavlicek T., Bergquist J., Vangala A., Danilas T., Nevo E. // PloS One. 2011. V. 6. № 3. P. e17968. https://doi.org/10.1371/journal.pone.0017968
  192. Safin R.I., Karimova L.Z., Nizamov R.M., Valiev A.R., Validov S.Z., Faizrakhmanov D.I. // Adv. Engin. Res. 2018. V. 151. P. 766–770. https://doi.org/10.2991/agrosmart-18.2018.143

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (536KB)

Copyright (c) 2023 О.В. Ласточкина, Ч.Р. Аллагулова