Adaptation of Erythrocytes: The Role of Hemoglobin, Nitric Oxide and Methylglyoxal (Review)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

All living systems are characterized by such fundamental properties as the ability to adaptation, self-regulation and formation of resistance. Mammalian non-nuclear erythrocytes also have the ability to adapt to external effects, but their regulatory capabilities are limited by cytoplasmic mechanisms, including phase transitions of proteins and membranes. This is one of the most ancient mechanisms of adaptation of living systems to external and internal conditions. Erythrocytes under changes in plasma composition, aging and energy depletion, undergo a reversible morpho-functional transformation, the transition from a discocyte to an echinocyte. The metabolic shifts occurring in this case correspond to a complex of universal changes that take place during erythrocyte transition to metabolic depression. As a rule, echinocytosis is considered as a pathological process preceding eryptosis and hemolysis. But it can be also considered as the first stage of the implementation of an universal program of passive cell adaptation, the ultimate goal of which is to transfer the system to suspended animation state. The energy status of an erythrocyte is determined by the equilibrium of soluble and membrane-bound hemoglobin (Hb) forms. Compounds with pronounced electrophilic properties – nitric oxide and methylglyoxal, affecting this equilibrium can induce cell’s transition from one metabolic state to another. The mechanism of their regulatory action is largely related to the modification of thiol groups of membrane and cytoskeleton proteins, including reactive SH-groups of Hb. It seems relevant to consider their effect on the state of Hb and erythrocytes.

Texto integral

Acesso é fechado

Sobre autores

O. Kosmachevskaya

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Email: aftopunov@yandex.ru
Rússia, Moscow, 119071

A. Topunov

Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: aftopunov@yandex.ru
Rússia, Moscow, 119071

Bibliografia

  1. Kamada T., Tokuda S., Aozaki S., Otsuji S. // J. Appl. Physiol. 1993. V. 74. P. 354–358.
  2. Parthasarathi K., Lipowsky H.H. // Am. J. Physiol. 1999. V. 277. P. H2145–H2157.
  3. Petibois C., Deleris G. // Arch. Med. Res. 2005. V. 36. P. 524–531.
  4. Mohandas N., Gallagher P.G. // Blood. 2008. V. 112. P. 3939–3948.
  5. Karaman Yu.K., Novgorodtseva T.P., Zhukova N.V. // International Journal of Applied and Fundamental Research. 2009. V. 2. P. 15–16.
  6. Зайцева О.И., Петрова И.А., Эверт Л.С., Колодяжная Т.А., Деревцова С.Н. // Вестник новых медицинских технологий. 2013. Т. 20. № 2. С. 69–72.
  7. Martusevich A.A., Deryugina A.V., Martusevich A.K. // Journal of Stress Physiology & Biochemistry. 2016. V. 12. № 3. P. 5–11.
  8. Barshtein G., Livshits L., Gural A., Arbell D., Barkan R., Pajic-Lijakovic I., Yedgar S. // Int. J. Mol. Sci. 2024. V. 25. № 11. e5814. https://doi.org/10.3390/ijms25115814
  9. Sae-Lee W., McCafferty C.L., Verbeke E.J., Havugimana P.C., Papoulas O., McWhite C.D., et al. // Cell. Rep. 2022. V. 40. № 3. e111103. https://doi.org/10.1016/j.celrep.2022.111103
  10. Насонов Д.Н. Местная реакция протоплазмы и распространяющееся возбуждение. М.: Изд-во Академии наук СССР, 1962. 426 c.
  11. Александров В.Я. Реактивность клеток и белки. Л.: Наука, 1985. 318 с.
  12. Matveev V.V. // Cell. Mol. Biol. 2005. V. 51. P. 715–723.
  13. Jin X., Zhang Y., Wang D., Zhang X., Li Y., Wang D., Liang Y., Wang J., Zheng L., Song H., Zhu X., Liang J., Ma J., Gao J., Tong J., Shi L. // iScience. 2024. V. 27. № 4. e109315. https://doi.org/10.1016/j.isci.2024.109315
  14. Сент-Дьёрдьи А. Биоэлектроника. Исследование в области клеточной регуляции, защитных механизмов и рака. М.: Мир, 1971. 80 с. (Szent-Györgyi A. Bioelectronics: A Study in Cellular Regulations, Defense, and Cancer. New York: Academic Press, 1968. 89 p.)
  15. Lang E., Lang F. // Bio Med. Res. Int. 2015. V. 2015. e513518. https://doi.org/10.1155/2015/513518
  16. Mihailescu M.-R., Russu I.M. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 7. P. 3773–3777.
  17. Benesch R.E., Benesch R. // Biochemistry. 1962. V. 1. № 5. P. 735–738.
  18. Morell S.A., Hoffman P., Ayers V.E., Taketa F. // Proc. Natl. Acad. Sci. USA. 1962. V. 48. P. 1057–1061.
  19. Aboluwoye C.O., Adebayo E.A., Egunlusi D., Tijani K., Bolaji S., Olayinka S. // Bull. Chem. Soc. Ethiop. 1998. V. 12. P. 17–25.
  20. Chu H., Breite A., Ciraolo P., Franco R.S., Low P.S. // Blood. 2008. V. 111. № 2. P. 932–938.
  21. Agroyannis B., Dalamangas A., Tzanatos H., Fourtounas C, Kopelias I., Koutsikos D.J. // Appl. Physiol. 1985. V. 80. № 2. P. 711–712.
  22. Reinhart W.H., Schulzki T. // Clin. Hemorheol. Microcirc. 2011. V. 49. № 1–4. P. 451–461.
  23. Chowdhury A., Dasgupta R., Majumder S.K. // J. Biomed. Opt. 2017. V. 22. № 10. P. 1–9.
  24. Мороз В.В., Голубев А.М., Черныш А.М., Козлова Е.К., Васильев Б.Ю., Гудкова О.Е. и др. // Общая реаниматология. 2012. Т. 8. С. 5–12.
  25. Mustafa I., Marwani A.A., Nasr K.M., Kano N.A., Hadwan T. // BioMed. Res. Int. 2016. V. 2016. e4529434. https://doi.org/10.1155/2016/4529434
  26. Кидалов В.Н., Сясин Н.И., Хадарцев А.А. // Вестник новых медицинских технологий. 2005. Т. 7. С. 6–10.
  27. Chowdhury A., Dasgupta R., Majumder S.K. // J. Biomed. Opt. 2017. V. 22. № 10. P. 1–9.
  28. Kosmachevskaya O.V., Novikova N.N., Yakunin S.N., Topunov A.F. // Biochemistry (Mosc.). 2024. V. 89. Suppl. 1. P. S180–S204.
  29. Bychkova V.E., Dolgikh D.A., Balobanov V.A., Finkelstein A.V. // Molecules. 2022. V. 27. № 14. e4361. https://doi.org/10.3390/molecules27144361.
  30. Gupta M.N., V.N. // Int. J. Mol. Sci. 2023. V. 24. № 3. e2424. https://doi.org/10.3390/ijms24032424
  31. Iram A., Alam T., Khan J.M., Khan T.A., Khan R.H., Naeem A. // PLoS One. 2013. V. 8. № 8. e72075. https://doi.org/10.1371/journal.pone.007207
  32. Dave S., Mahajan S., Chandra V., Gupta P. // Int. J. Biol. Macromol. 2011. V. 49. № 4. P. 536–542.
  33. Iram A., Naeem A. // Arch. Biochem. Biophys. 2013. V. 533. P. 69–78.
  34. Samuel P.P., White M.A., Ou W.C., Case D.A., Phillips Jr. G.N., Olson J.S. // Biophys. J. 2020. V. 118. № 6. P. 1381–1400.
  35. Jennings P.A., Wright P.E. // Science. 1993. V. 262. P. 892–896.
  36. Rifkind J.M., Abugo O., Levy A., Heim J. // Methods Enzymol. 1994. V. 231. P. 449–480.
  37. Culbertson D.S., Olson J.S. // In: Protein Folding and Metal Ions: Mechanisms, Biology, Disease. / Ed. P. Wittung-Stafshede, C.M. Gomes. Abingdon-on-Thames, UK: Taylor and Francis, 2010. P. 97–122.
  38. Андреюк Г.М., Кисель М.А. // Биоорганическая химия. 1997. Т. 23. № 4. С. 290–293.
  39. Ioannou A., Varotsis C. // PLoS One. 2017. V. 12. e0188095. https://doi.org/10.1371/journal.pone.0188095
  40. Arnold E.V., Bohle D.S., Jordan P.A. // Biochemistry. 1999. V. 38. P. 4750–4756.
  41. Shikama K. // Chem. Rev. 1998. V. 98. P. 1357–1373.
  42. Sugawara Y., Kadono E., Suzuki A., Yukuta Y., Shibasaki Y., Nishimura N. et al. // Acta Physiol. Scand. 2003. V. 179. P. 49–59.
  43. Vergara A., Vitagliano L., Verde C., di Prisco G., Mazzarella L. // Methods Enzymol. 2008. V. 436. P. 425–444.
  44. Kosmachevskaya O.V., Nasybullina E.I., Blindar V.N., Topunov A.F. // Appl. Biochem. Microbiol. 2019. V. 55. № 2. P. 83–98.
  45. Браун А.Д., Моженок Т.П. Неспецифический адаптационный синдром клеточной системы. Л.: Наука, 1987. 232 с.
  46. Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. // Antioxid. Redox Signal. 2010. V. 13. P. 1763–1811.
  47. Agathokleous E., Liu C.-J., Calabrese E.J. // Soil & Environmental Health. 2023. V. 1. № 1. e100003. https://doi.org/10.1016/j.seh.2023.100003
  48. Agutter. // 2007. V. 29. № 4. P. 324–333.
  49. Kruchinina M.V., Gromov A.A. // Ateroscleroz. V. 18. № 2. P. 165–179.
  50. Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. // Front. Physiol. 2018. V. 9. e656. https://doi.org/10.3389/fphys.2018.00656
  51. Kosmachevskaya O.V., Topunov A.F. // Biochemistry (Moscow). 2018. V. 83. № 12–13. P. 1575–1593.
  52. O’Neill J.S., Reddy A.B. // Nature. 2011. V. 469. P. 498–503.
  53. Cho C.S., Yoon H.J., Kim J.Y., Woo H.A., Rhee S.G. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 12043–12048.
  54. Henslee E.A., Crosby P., Kitcatt S.J., Parry J.S.W., Bernardini A., Abdallat R.G., et al. // Nat. Commun. 2017. V. 8. № 1. e1978. https://doi.org/10.1038/s41467-017-02161-4
  55. Mishra K., Chakrabarti A., Das P.K. // J. Phys. Chem. B. 2017. V. 121. P. 7797–7802.
  56. Welbourn E.M., Wilson M.T., Yusof A., Metodiev M.V., Cooper C.E. // Free Radic. Biol. Med. 2017. V. 103. P. 95–106.
  57. Shimo H., Arjunan S.N.V., Machiyama H., Nishino T., Suematsu M., Fujita H., et al. // PLoS Comput. Biol. 2015. V. 11. № 6. e1004210. https://doi.org/10.1371/journal.pcbi.1004210
  58. Sega M.F., Chu H., Christian J., Low P.S. // Biochem. 2012. V. 51. P. 3264–3272.
  59. Sharma R., Premachandra B.R. // Biochem. Med. Metab. Biol. 1991. V. 46. P. 33–44.
  60. Chan E., Desforges J.F. // Br. J. Haematol. 1976. V. 33. № 3. P. 371–378.
  61. Datta P., Chakrabarty S., Chakrabarty A., Chakrabarty A. // Biochim. Biophys. Acta. 2008. V. 1778. P. 1–9.
  62. Demehin A.A., Abugo O.O., Jayakumar J.R., Rifkind J.M. // Biochem. 2002. V. 41. P. 8630–8637.
  63. Sullivan S.G., Stern A. // Biochim. Biophys. Acta. 1984. V. 774. P. 215–220.
  64. Zavodnik I.B., Lapshina E.A., Rekawiecka K., Zavodnik L.B., Bartosz G., Bryszewska M. // Biochim. Biophys. Acta. 1999. V. 1421. P. 306–316.
  65. Nagababu E., Mohanty J.G., Bhamidipaty S., Ostera G.R., Rifkind J.M. // Life Sci. 2010. V. 86. P. 133–138.
  66. Kriebardis A.G., Antonelou M.H., Stamoulis K.E., Economou-Petersen E., Margaritis L.H., Papassideri I.S. // J. Cell. Mol. Med. 2007. V. 11. P. 148–155.
  67. Luneva O.G., Sidorenko S.V., Ponomarchuk O.O., Tverskoy A.M.,Cherkashin A.A., Rodnenkov O.V. et al. // Cell. Physiol. Biochem. 2016. V. 39. № 1. P. 81–88.
  68. Castagnola M., Messana I., Sanna M.T., Giardina B. // Blood Transfus. 2010. V. 8. P. 53–58.
  69. Jarolim P., Lahav M., Liu S.C., Palek J. // Blood. 1990. V. 76. P. 2125–2131.
  70. Knutton S., Finean J.B., Coleman R., Limbrick A.R. // J. Cell Sci. 1970. V. 7. P. 357–371.
  71. Комиссарчик Я.Ю., Левин С.В., Свиридов Б.Е., Сабаляускас И.Ю., Айдитите Г.С. // Общие механизмы клеточных реакций на повреждающие воздействия”. Л.: Институт цитологии, 1977. С. 29–31.
  72. Шперлинг И.А., Рязанцева Н.В., Куприна Н.П., Филиппова О.Н., Рогов О.А., Акимова В.В., Бас В.В. // Современные наукоемкие технологии. 2004. №. 6. С. 104.
  73. Ferru E., Giger K., Pantaleo A., Campanella E., Grey J., Ritchie K., Vono R., Turrini F., Low P.S. // Blood. 2011. V. 117. P. 5998–6006.
  74. Pantaleo A., Ferru E., Pau M.C., Khadjavi A., Mandili G., Mattè A. et al. // Oxid. Med. Cell. Longev. 2016. V. 2016. e6051093. https://doi.org/10.1155/2016/6051093
  75. Chu H., Low P.S. // Biochem. J. 2006. V. 400. P. 143–151.
  76. Weber R.E., Voelter W., Fago A., Echner H., Campanella E., Low P.S. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. V. 287. P. 454–464.
  77. Weed R.I., LaCelle P.L., Merrill E.W. // J. Clin. Invest. 1969. V. 48. P. 795–809.
  78. Атауллаханов Ф.И., Корунова Н.О., Спиридонов И.С., Пивоваров И.О. // Биологические мембраны. 2009. Т. 26. С. 163–179.
  79. Dybas J., Bokamper M.J., Marzec K.M., Mak P.J. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 239. e118530. https://doi.org/10.1016/j.saa.2020.118530
  80. Alayash A.I. // Lab. Invest. 2021. V. 1. P. 4–11.
  81. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 512–520.
  82. Gladwin M.T., Ognibene F.P., Pannell L.K., Nichols J.S., Pease-Fye M.E., Shelhamer J.H., Schechter A.N. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 18. P. 9943–9948.
  83. Stamler J.S., Singel D.J., Piantadosi C.A. // Nat. Med. 2008. V. 14. P. 1008–1009.
  84. Huang K.T., Keszler A., Patel N., Patel R.P., Gladwin M.T., Kim-Shapiro D.B., Hogg N. // J. Biol. Chem. 2005. V. 280. P. 31126–31131.
  85. Xu X., Cho M., Spencer N.Y., Patel N., Huang Z., Shields H. et al. // Proc. Nat. Acad. Sci. USA. 2003. V. 100. P. 11303–11308.
  86. Isbell T.S., Sun C.W., Wu L.C., Teng X., Vitturi D.A., Branch B.G., et al. // Nat. Med. 2008. V. 14. P. 773–777.
  87. Vitturi D.A., Sun C.-W., Harper V.M., Thrash-Williams B., Cantu-Medellin N., Chacko B.K., et al. // Free Radic. Biol. Med. 2013. V. 55. P. 119–129.
  88. Balagopalakrishna C., Abugo O.O., Horsky J., Manoharan P.T., Nagababu E., Rifkind J.M. // Biochemistry. 1998. V. 37. P. 13194–13202.
  89. Bonaventura C., Godette G., Tesh S., Holm D.E., Bonaventura J., Crumbliss A.L. et al. // J. Biol. Chem. 1999. V. 274. P. 5499–5507.
  90. Jacob H.S., Brain M.C., Dacie J.V. // J. Clin. Invest. 1968. V. 47. № 12. P. 2664–2677.
  91. Giles N.M., Watts A.B., Giles G.I., Fry F.H., Littlechild J.A., Jacob C. // Chem. Biol. 2003. V. 10. P. 677–693.
  92. Paulsen C.E., Carroll K.S. // Chem. Rev. 2013. V. 113. № 7. P. 4633–4679.
  93. Novikova N.N., Kovalchuk M.V., Yurieva E.A., Konovalov O.V., Stepina N.D., Rogachev A.V. et al. // J. Phys. Chem. B. 2019. V. 123. № 40. P. 8370–8377.
  94. Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A., Vanin A.F., Topunov А.F. // Methods Enzymol. 2008. V. 436. P. 445–461.
  95. Shumaev K.B., Kosmachevskaya O.V., Nasybullina E.I., Ruuge E.K., Topunov A.F. // Int. J. Mol. Sci. 2023. V. 24. № 1. e168. https://doi.org/10.3390/ijms24010168
  96. Bosworth C.A., Toledo J.C.Jr., Zmijewski J.W., Li Q., Lancaster J.R. Jr. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 4671–4676.
  97. Vanin A.F. Dinitrosyl Iron Complexes as a “Working Form” of Nitric Oxide in Living Organisms. Cambridge, UK: Cambridge Scholars Publishing, 2019. 266 p. ISBN: 978-1-5275-3906-8
  98. Seth D., Hausladen A., Stamler J.S. // Antioxid. Redox Signal. 2020. V. 32. № 12. P. 803–816.
  99. Schlecht S., Fleming H., Parks K. // ChemRxiv. 2023. Preprint 2023–05–18. https://doi.org/10.26434/chemrxiv-2023-wb9m7
  100. Badior K.E., Casey J.R. // IUBMB Life. 2018. V. 70. P. 32–40.
  101. Matte A., Bertoldi M., Mohandas N., An X., Bugatti A., Brunati A.M. et al. // Free Radic. Biol. Med. 2013. V. 55. P. 27–35.
  102. Bayer S.B., Low F.M., Hampton M.B., Winterbourn C.C. // Free Radic. Res. 2016. V. 50. P. 1329–1339.
  103. Long M.J., Aye Y. // Chem. 2016. V. 29. № 10. P. 1575–1582.
  104. Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Biochemistry (Moscow). 2019. V. 84. Suppl. 1. P. S206–S224.
  105. Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Appl. Biochem. Microbiol. 2017. V. 53. № 3. P. 273–289.
  106. Hsiao H., ., ., ., . // 2019. V. 48. P. 9431–9453.
  107. Rabbani N., Thornalley P.J. // Diabetes. 2014. V. 63. P. 50–52.
  108. Kosmachevskaya O.V., Novikova N.N., Topunov A.F. // Antioxidants. 2021. V. 10. № 2. e253. https://doi.org/10.3390/antiox10020253
  109. Pugachenko I.S., Nasybullina E.I., Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Appl. Biochem. Microbiol. 2023. V. 59. № 5. P. 561–569.
  110. Shumaev K.B., Kosmachevskaya O.V., Nasybullina E.I., Ruuge E.K., Кalenikova E.I., Topunov A.F. // Int. J. Mol. Sci. 2023. V. 24. № 24. e17236. https://doi.org/10.3390/ijms242417236
  111. Shumaev K.B., Gubkina S.A., Vanin A.F., Burbaev D.Sh., Mokh V.P., Topunov A.V., Ruuge E.K. // Biophysics. 2013. V. 58. № 2. P. 172–177.
  112. Fu T.-T., Shen L. // Front. Pharmacol. 2022. V. 13. e850813. https://doi.org/10.3389/fphar.2022.850813
  113. Cheah I.K., Halliwell B. // Biochim. Biophys. Acta. 2012. V. 1822. P. 784–793.
  114. Malathy D., Anusha D., Karthika K., Punnagai K. // J. Clin. Diagn. Res. 2023. V. 17. № 7. P. FC01-FC05.
  115. Shumaev K.B., Gorudko I.V., Kosmachevskaya O., Grigoryeva D., Panasenko O.M., Vanin A. et al. // Oxid. Med. Cell. Longev. 2019. V. 2019. e2798154. https://doi.org/10.1155/2019/2798154.
  116. Shumaev K.B., Kosmachevskaya O.V., Grachev D.I., Timoshin A.A., Topunov A.F., Lankin V.Z., Ruuge E.K. // Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2021. V. 15. № 4. P. 313–319.
  117. Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/ijms222413649
  118. Шамова E.B., Бичан О.Д., Дpозд Е.C., Гоpудко И.В., Чижик C.А., Шумаев К.Б. и др. // Биофизика. 2011. Т. 56. № 2. С. 265–271.
  119. Nicolay J.P., Liebig G., Niemoeller O.M., Koka S., Ghashghaeinia M., Wieder T. et al. // Pflugers Arch. 2008. V. 456. P. 293–305.
  120. Lankin V., Belova E., Tikhaze A.K. // Biophysics. V. 62. № 2. P. 252–255.
  121. Белых И.А., Воловельская Е.Л., Зинченко В.Д. // Проблемы криобиологии. 2007. Т. 17. С. 237–242.
  122. Шевченко О.Г. // Радиационная биология. Радиоэкология. 2014. Т. 4. С. 377–384.
  123. Tesoriere L., D’Arpa D., Conti S., Giaccone V., Pintaudi A.M., Livrea M.A. // Pineal Researsh. 1999. V. 27. P. 95–105.
  124. Mendanha S.A., Anjos J.L.V., Silva A.H.M., Alonso A. // Braz. J. Med. Biol. Res. 2012. V. 45. P. 473–481.
  125. Phillips S.A., Thornalley P.J. // Biochem. Soc. Trans. 1993. V. 21. № 2. e163s. https://doi.org/10.1042/bst021163s
  126. Zeng J., Davies M.J. // Chem. Res. Toxicol. 2005. V. 18. P. 1232–1241.
  127. Beard K.M., Shangari N., Wu B., O’Brien P.J. // Mol. Cell Biochem. 2003. V. 252. P. 331–338.
  128. Nicolay J.P., Liebig G., Niemoeller O.M., Koka S., Ghashghaeinia M., Wieder T. et al. // Life Sci. 2010. V. 86. P. 133–138.
  129. Chen H.-J.C., Chen Y.-C., Hsiao C.-F., Chen P.-F. // Chem. Res. Toxicol. 2015. V. 28. P. 2377–2389.
  130. McMahon T.J., Stone A.E., Bonaventura J., Stamler J.S. // Am. J. Respir. Crit. Care Med. 1999. V. 159. № 3. P. A352.
  131. Stepuro T.L., Zinchuk V.V. // J. Physiol. Pharmacol. 2006. V. 57. № 1. P. 29–38.
  132. D’Alessandro A., Xia Y. // Curr. Opin. Hematol. 2020. V. 27. № 3. P. 155–162.
  133. Misra H.P., Fridovich I. // J. Biol. Chem. 1972. V. 247. P. 6960–6962.
  134. Kiefmann R., Rifkind J.M., Nagababu E., Bhattacharya J. // Blood. 2008. V. 111. P. 5205–5214.
  135. Crawford J.H., Isbell T.S., Huang Z., Shiva S., Chacko B.K., Schechter A.N. et al. // Blood. 2006. V. 107. P. 566–574.
  136. Abalenikhina Yu.V., Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 611–625.
  137. Yang J., Carrol K.S., Liebler D.C. // Molecular & Cellular Proteomics. 2016. V. 15. P. 1–11.
  138. Finelli M.J. // Front Aging Neurosci. 2020. V. 12. e254. https://doi.org/10.3389/fnagi.2020.00254
  139. Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2021. V. 57. № 5. P. 543–555.
  140. Barbarino F., Wäschenbach L., Cavalho-Lemos V., Dillenberger M., Becker K., Gohlke H., Cortese-Krott M.M. // Biol. Chem. 2020. V. 402. № 3. P. 317–331.
  141. Diederich L., Suvorava T., Sansone R., Keller T.C.S. 4th, Barbarino F., Sutton T.R. et al. // Front. Physiol. 2018. V. 9. e332. https://doi.org/10.3389/fphys.2018.00332
  142. Desai K.M., Wu L. // Drug Metabol. Drug. Interact. 2008. V. 23. P. 151–173.
  143. Kosmachevskaya O.V., Shumaev К.B., Nasybullina E.I., Gubkina S.А., Topunov А.F. // Hemoglobin. 2013. V. 37. № 3. P. 205–218.
  144. Svensson R., Alander J., Armstrong R.N., Morgenstern R. // Biochemistry. 2004. V. 43. P. 8869–8877.
  145. Turell L., Botti H., Carballal S., Radi R., Alvarez B. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009. V. 877. № 28. P. 3384–3392.
  146. Биллах Х.М., Хасанов Н.Р., Ослопов В.Н., Чугунова Д.Н. // Практическая медицина. 2013. Т. 3. № 71. С. 34–36.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. 1. Hypochlorous acid−induced (HOCl/OCl-) hemolysis of erythrocytes: 1 is a control sample, 2 are red blood cells pretreated with DNCG-GS. Each point is the average of three experiences. The horizontal dotted line indicates the level of autohemolysis in the control. Inset: schematic representation of a U-shaped dose–response hormesis curve.

Baixar (112KB)
3. 2. Transformations of hemoglobin in the erythrocyte depending on the level of oxidative stress or the time of functioning.

Baixar (159KB)
4. 3. Inhibition of oxidative hemolysis of erythrocytes: the effect of preadaptation to the oxidant: 1 − control, 2 − 200 µm HOCl, 3 − 200 µm HOCl (20 min incubation) + 200 µm HOCl, 4 − 400 µm HOCl.

Baixar (130KB)
5. 4. The dependence of the biological effect of nitric oxide on its concentration. The figure is based on data from [106].

Baixar (197KB)
6. Table

Baixar (57KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024