Adaptation of Erythrocytes: The Role of Hemoglobin, Nitric Oxide and Methylglyoxal (Review)
- Autores: Kosmachevskaya O.V.1, Topunov A.F.1
-
Afiliações:
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
- Edição: Volume 60, Nº 6 (2024)
- Páginas: 563-579
- Seção: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/681112
- DOI: https://doi.org/10.31857/S0555109924060012
- EDN: https://elibrary.ru/QGZJPO
- ID: 681112
Citar
Resumo
All living systems are characterized by such fundamental properties as the ability to adaptation, self-regulation and formation of resistance. Mammalian non-nuclear erythrocytes also have the ability to adapt to external effects, but their regulatory capabilities are limited by cytoplasmic mechanisms, including phase transitions of proteins and membranes. This is one of the most ancient mechanisms of adaptation of living systems to external and internal conditions. Erythrocytes under changes in plasma composition, aging and energy depletion, undergo a reversible morpho-functional transformation, the transition from a discocyte to an echinocyte. The metabolic shifts occurring in this case correspond to a complex of universal changes that take place during erythrocyte transition to metabolic depression. As a rule, echinocytosis is considered as a pathological process preceding eryptosis and hemolysis. But it can be also considered as the first stage of the implementation of an universal program of passive cell adaptation, the ultimate goal of which is to transfer the system to suspended animation state. The energy status of an erythrocyte is determined by the equilibrium of soluble and membrane-bound hemoglobin (Hb) forms. Compounds with pronounced electrophilic properties – nitric oxide and methylglyoxal, affecting this equilibrium can induce cell’s transition from one metabolic state to another. The mechanism of their regulatory action is largely related to the modification of thiol groups of membrane and cytoskeleton proteins, including reactive SH-groups of Hb. It seems relevant to consider their effect on the state of Hb and erythrocytes.
Palavras-chave
Texto integral

Sobre autores
O. Kosmachevskaya
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Email: aftopunov@yandex.ru
Rússia, Moscow, 119071
A. Topunov
Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Autor responsável pela correspondência
Email: aftopunov@yandex.ru
Rússia, Moscow, 119071
Bibliografia
- Kamada T., Tokuda S., Aozaki S., Otsuji S. // J. Appl. Physiol. 1993. V. 74. P. 354–358.
- Parthasarathi K., Lipowsky H.H. // Am. J. Physiol. 1999. V. 277. P. H2145–H2157.
- Petibois C., Deleris G. // Arch. Med. Res. 2005. V. 36. P. 524–531.
- Mohandas N., Gallagher P.G. // Blood. 2008. V. 112. P. 3939–3948.
- Karaman Yu.K., Novgorodtseva T.P., Zhukova N.V. // International Journal of Applied and Fundamental Research. 2009. V. 2. P. 15–16.
- Зайцева О.И., Петрова И.А., Эверт Л.С., Колодяжная Т.А., Деревцова С.Н. // Вестник новых медицинских технологий. 2013. Т. 20. № 2. С. 69–72.
- Martusevich A.A., Deryugina A.V., Martusevich A.K. // Journal of Stress Physiology & Biochemistry. 2016. V. 12. № 3. P. 5–11.
- Barshtein G., Livshits L., Gural A., Arbell D., Barkan R., Pajic-Lijakovic I., Yedgar S. // Int. J. Mol. Sci. 2024. V. 25. № 11. e5814. https://doi.org/10.3390/ijms25115814
- Sae-Lee W., McCafferty C.L., Verbeke E.J., Havugimana P.C., Papoulas O., McWhite C.D., et al. // Cell. Rep. 2022. V. 40. № 3. e111103. https://doi.org/10.1016/j.celrep.2022.111103
- Насонов Д.Н. Местная реакция протоплазмы и распространяющееся возбуждение. М.: Изд-во Академии наук СССР, 1962. 426 c.
- Александров В.Я. Реактивность клеток и белки. Л.: Наука, 1985. 318 с.
- Matveev V.V. // Cell. Mol. Biol. 2005. V. 51. P. 715–723.
- Jin X., Zhang Y., Wang D., Zhang X., Li Y., Wang D., Liang Y., Wang J., Zheng L., Song H., Zhu X., Liang J., Ma J., Gao J., Tong J., Shi L. // iScience. 2024. V. 27. № 4. e109315. https://doi.org/10.1016/j.isci.2024.109315
- Сент-Дьёрдьи А. Биоэлектроника. Исследование в области клеточной регуляции, защитных механизмов и рака. М.: Мир, 1971. 80 с. (Szent-Györgyi A. Bioelectronics: A Study in Cellular Regulations, Defense, and Cancer. New York: Academic Press, 1968. 89 p.)
- Lang E., Lang F. // Bio Med. Res. Int. 2015. V. 2015. e513518. https://doi.org/10.1155/2015/513518
- Mihailescu M.-R., Russu I.M. // Proc. Natl. Acad. Sci. USA. 2001. V. 98. № 7. P. 3773–3777.
- Benesch R.E., Benesch R. // Biochemistry. 1962. V. 1. № 5. P. 735–738.
- Morell S.A., Hoffman P., Ayers V.E., Taketa F. // Proc. Natl. Acad. Sci. USA. 1962. V. 48. P. 1057–1061.
- Aboluwoye C.O., Adebayo E.A., Egunlusi D., Tijani K., Bolaji S., Olayinka S. // Bull. Chem. Soc. Ethiop. 1998. V. 12. P. 17–25.
- Chu H., Breite A., Ciraolo P., Franco R.S., Low P.S. // Blood. 2008. V. 111. № 2. P. 932–938.
- Agroyannis B., Dalamangas A., Tzanatos H., Fourtounas C, Kopelias I., Koutsikos D.J. // Appl. Physiol. 1985. V. 80. № 2. P. 711–712.
- Reinhart W.H., Schulzki T. // Clin. Hemorheol. Microcirc. 2011. V. 49. № 1–4. P. 451–461.
- Chowdhury A., Dasgupta R., Majumder S.K. // J. Biomed. Opt. 2017. V. 22. № 10. P. 1–9.
- Мороз В.В., Голубев А.М., Черныш А.М., Козлова Е.К., Васильев Б.Ю., Гудкова О.Е. и др. // Общая реаниматология. 2012. Т. 8. С. 5–12.
- Mustafa I., Marwani A.A., Nasr K.M., Kano N.A., Hadwan T. // BioMed. Res. Int. 2016. V. 2016. e4529434. https://doi.org/10.1155/2016/4529434
- Кидалов В.Н., Сясин Н.И., Хадарцев А.А. // Вестник новых медицинских технологий. 2005. Т. 7. С. 6–10.
- Chowdhury A., Dasgupta R., Majumder S.K. // J. Biomed. Opt. 2017. V. 22. № 10. P. 1–9.
- Kosmachevskaya O.V., Novikova N.N., Yakunin S.N., Topunov A.F. // Biochemistry (Mosc.). 2024. V. 89. Suppl. 1. P. S180–S204.
- Bychkova V.E., Dolgikh D.A., Balobanov V.A., Finkelstein A.V. // Molecules. 2022. V. 27. № 14. e4361. https://doi.org/10.3390/molecules27144361.
- Gupta M.N., V.N. // Int. J. Mol. Sci. 2023. V. 24. № 3. e2424. https://doi.org/10.3390/ijms24032424
- Iram A., Alam T., Khan J.M., Khan T.A., Khan R.H., Naeem A. // PLoS One. 2013. V. 8. № 8. e72075. https://doi.org/10.1371/journal.pone.007207
- Dave S., Mahajan S., Chandra V., Gupta P. // Int. J. Biol. Macromol. 2011. V. 49. № 4. P. 536–542.
- Iram A., Naeem A. // Arch. Biochem. Biophys. 2013. V. 533. P. 69–78.
- Samuel P.P., White M.A., Ou W.C., Case D.A., Phillips Jr. G.N., Olson J.S. // Biophys. J. 2020. V. 118. № 6. P. 1381–1400.
- Jennings P.A., Wright P.E. // Science. 1993. V. 262. P. 892–896.
- Rifkind J.M., Abugo O., Levy A., Heim J. // Methods Enzymol. 1994. V. 231. P. 449–480.
- Culbertson D.S., Olson J.S. // In: Protein Folding and Metal Ions: Mechanisms, Biology, Disease. / Ed. P. Wittung-Stafshede, C.M. Gomes. Abingdon-on-Thames, UK: Taylor and Francis, 2010. P. 97–122.
- Андреюк Г.М., Кисель М.А. // Биоорганическая химия. 1997. Т. 23. № 4. С. 290–293.
- Ioannou A., Varotsis C. // PLoS One. 2017. V. 12. e0188095. https://doi.org/10.1371/journal.pone.0188095
- Arnold E.V., Bohle D.S., Jordan P.A. // Biochemistry. 1999. V. 38. P. 4750–4756.
- Shikama K. // Chem. Rev. 1998. V. 98. P. 1357–1373.
- Sugawara Y., Kadono E., Suzuki A., Yukuta Y., Shibasaki Y., Nishimura N. et al. // Acta Physiol. Scand. 2003. V. 179. P. 49–59.
- Vergara A., Vitagliano L., Verde C., di Prisco G., Mazzarella L. // Methods Enzymol. 2008. V. 436. P. 425–444.
- Kosmachevskaya O.V., Nasybullina E.I., Blindar V.N., Topunov A.F. // Appl. Biochem. Microbiol. 2019. V. 55. № 2. P. 83–98.
- Браун А.Д., Моженок Т.П. Неспецифический адаптационный синдром клеточной системы. Л.: Наука, 1987. 232 с.
- Calabrese V., Cornelius C., Dinkova-Kostova A.T., Calabrese E.J., Mattson M.P. // Antioxid. Redox Signal. 2010. V. 13. P. 1763–1811.
- Agathokleous E., Liu C.-J., Calabrese E.J. // Soil & Environmental Health. 2023. V. 1. № 1. e100003. https://doi.org/10.1016/j.seh.2023.100003
- Agutter. // 2007. V. 29. № 4. P. 324–333.
- Kruchinina M.V., Gromov A.A. // Ateroscleroz. V. 18. № 2. P. 165–179.
- Huisjes R., Bogdanova A., van Solinge W.W., Schiffelers R.M., Kaestner L., van Wijk R. // Front. Physiol. 2018. V. 9. e656. https://doi.org/10.3389/fphys.2018.00656
- Kosmachevskaya O.V., Topunov A.F. // Biochemistry (Moscow). 2018. V. 83. № 12–13. P. 1575–1593.
- O’Neill J.S., Reddy A.B. // Nature. 2011. V. 469. P. 498–503.
- Cho C.S., Yoon H.J., Kim J.Y., Woo H.A., Rhee S.G. // Proc. Natl. Acad. Sci. USA. 2014. V. 111. P. 12043–12048.
- Henslee E.A., Crosby P., Kitcatt S.J., Parry J.S.W., Bernardini A., Abdallat R.G., et al. // Nat. Commun. 2017. V. 8. № 1. e1978. https://doi.org/10.1038/s41467-017-02161-4
- Mishra K., Chakrabarti A., Das P.K. // J. Phys. Chem. B. 2017. V. 121. P. 7797–7802.
- Welbourn E.M., Wilson M.T., Yusof A., Metodiev M.V., Cooper C.E. // Free Radic. Biol. Med. 2017. V. 103. P. 95–106.
- Shimo H., Arjunan S.N.V., Machiyama H., Nishino T., Suematsu M., Fujita H., et al. // PLoS Comput. Biol. 2015. V. 11. № 6. e1004210. https://doi.org/10.1371/journal.pcbi.1004210
- Sega M.F., Chu H., Christian J., Low P.S. // Biochem. 2012. V. 51. P. 3264–3272.
- Sharma R., Premachandra B.R. // Biochem. Med. Metab. Biol. 1991. V. 46. P. 33–44.
- Chan E., Desforges J.F. // Br. J. Haematol. 1976. V. 33. № 3. P. 371–378.
- Datta P., Chakrabarty S., Chakrabarty A., Chakrabarty A. // Biochim. Biophys. Acta. 2008. V. 1778. P. 1–9.
- Demehin A.A., Abugo O.O., Jayakumar J.R., Rifkind J.M. // Biochem. 2002. V. 41. P. 8630–8637.
- Sullivan S.G., Stern A. // Biochim. Biophys. Acta. 1984. V. 774. P. 215–220.
- Zavodnik I.B., Lapshina E.A., Rekawiecka K., Zavodnik L.B., Bartosz G., Bryszewska M. // Biochim. Biophys. Acta. 1999. V. 1421. P. 306–316.
- Nagababu E., Mohanty J.G., Bhamidipaty S., Ostera G.R., Rifkind J.M. // Life Sci. 2010. V. 86. P. 133–138.
- Kriebardis A.G., Antonelou M.H., Stamoulis K.E., Economou-Petersen E., Margaritis L.H., Papassideri I.S. // J. Cell. Mol. Med. 2007. V. 11. P. 148–155.
- Luneva O.G., Sidorenko S.V., Ponomarchuk O.O., Tverskoy A.M.,Cherkashin A.A., Rodnenkov O.V. et al. // Cell. Physiol. Biochem. 2016. V. 39. № 1. P. 81–88.
- Castagnola M., Messana I., Sanna M.T., Giardina B. // Blood Transfus. 2010. V. 8. P. 53–58.
- Jarolim P., Lahav M., Liu S.C., Palek J. // Blood. 1990. V. 76. P. 2125–2131.
- Knutton S., Finean J.B., Coleman R., Limbrick A.R. // J. Cell Sci. 1970. V. 7. P. 357–371.
- Комиссарчик Я.Ю., Левин С.В., Свиридов Б.Е., Сабаляускас И.Ю., Айдитите Г.С. // Общие механизмы клеточных реакций на повреждающие воздействия”. Л.: Институт цитологии, 1977. С. 29–31.
- Шперлинг И.А., Рязанцева Н.В., Куприна Н.П., Филиппова О.Н., Рогов О.А., Акимова В.В., Бас В.В. // Современные наукоемкие технологии. 2004. №. 6. С. 104.
- Ferru E., Giger K., Pantaleo A., Campanella E., Grey J., Ritchie K., Vono R., Turrini F., Low P.S. // Blood. 2011. V. 117. P. 5998–6006.
- Pantaleo A., Ferru E., Pau M.C., Khadjavi A., Mandili G., Mattè A. et al. // Oxid. Med. Cell. Longev. 2016. V. 2016. e6051093. https://doi.org/10.1155/2016/6051093
- Chu H., Low P.S. // Biochem. J. 2006. V. 400. P. 143–151.
- Weber R.E., Voelter W., Fago A., Echner H., Campanella E., Low P.S. // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2004. V. 287. P. 454–464.
- Weed R.I., LaCelle P.L., Merrill E.W. // J. Clin. Invest. 1969. V. 48. P. 795–809.
- Атауллаханов Ф.И., Корунова Н.О., Спиридонов И.С., Пивоваров И.О. // Биологические мембраны. 2009. Т. 26. С. 163–179.
- Dybas J., Bokamper M.J., Marzec K.M., Mak P.J. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020. V. 239. e118530. https://doi.org/10.1016/j.saa.2020.118530
- Alayash A.I. // Lab. Invest. 2021. V. 1. P. 4–11.
- Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 5. P. 512–520.
- Gladwin M.T., Ognibene F.P., Pannell L.K., Nichols J.S., Pease-Fye M.E., Shelhamer J.H., Schechter A.N. // Proc. Natl. Acad. Sci. USA. 2000. V. 97. № 18. P. 9943–9948.
- Stamler J.S., Singel D.J., Piantadosi C.A. // Nat. Med. 2008. V. 14. P. 1008–1009.
- Huang K.T., Keszler A., Patel N., Patel R.P., Gladwin M.T., Kim-Shapiro D.B., Hogg N. // J. Biol. Chem. 2005. V. 280. P. 31126–31131.
- Xu X., Cho M., Spencer N.Y., Patel N., Huang Z., Shields H. et al. // Proc. Nat. Acad. Sci. USA. 2003. V. 100. P. 11303–11308.
- Isbell T.S., Sun C.W., Wu L.C., Teng X., Vitturi D.A., Branch B.G., et al. // Nat. Med. 2008. V. 14. P. 773–777.
- Vitturi D.A., Sun C.-W., Harper V.M., Thrash-Williams B., Cantu-Medellin N., Chacko B.K., et al. // Free Radic. Biol. Med. 2013. V. 55. P. 119–129.
- Balagopalakrishna C., Abugo O.O., Horsky J., Manoharan P.T., Nagababu E., Rifkind J.M. // Biochemistry. 1998. V. 37. P. 13194–13202.
- Bonaventura C., Godette G., Tesh S., Holm D.E., Bonaventura J., Crumbliss A.L. et al. // J. Biol. Chem. 1999. V. 274. P. 5499–5507.
- Jacob H.S., Brain M.C., Dacie J.V. // J. Clin. Invest. 1968. V. 47. № 12. P. 2664–2677.
- Giles N.M., Watts A.B., Giles G.I., Fry F.H., Littlechild J.A., Jacob C. // Chem. Biol. 2003. V. 10. P. 677–693.
- Paulsen C.E., Carroll K.S. // Chem. Rev. 2013. V. 113. № 7. P. 4633–4679.
- Novikova N.N., Kovalchuk M.V., Yurieva E.A., Konovalov O.V., Stepina N.D., Rogachev A.V. et al. // J. Phys. Chem. B. 2019. V. 123. № 40. P. 8370–8377.
- Shumaev K.B., Kosmachevskaya O.V., Timoshin A.A., Vanin A.F., Topunov А.F. // Methods Enzymol. 2008. V. 436. P. 445–461.
- Shumaev K.B., Kosmachevskaya O.V., Nasybullina E.I., Ruuge E.K., Topunov A.F. // Int. J. Mol. Sci. 2023. V. 24. № 1. e168. https://doi.org/10.3390/ijms24010168
- Bosworth C.A., Toledo J.C.Jr., Zmijewski J.W., Li Q., Lancaster J.R. Jr. // Proc. Natl. Acad. Sci. USA. 2009. V. 106. P. 4671–4676.
- Vanin A.F. Dinitrosyl Iron Complexes as a “Working Form” of Nitric Oxide in Living Organisms. Cambridge, UK: Cambridge Scholars Publishing, 2019. 266 p. ISBN: 978-1-5275-3906-8
- Seth D., Hausladen A., Stamler J.S. // Antioxid. Redox Signal. 2020. V. 32. № 12. P. 803–816.
- Schlecht S., Fleming H., Parks K. // ChemRxiv. 2023. Preprint 2023–05–18. https://doi.org/10.26434/chemrxiv-2023-wb9m7
- Badior K.E., Casey J.R. // IUBMB Life. 2018. V. 70. P. 32–40.
- Matte A., Bertoldi M., Mohandas N., An X., Bugatti A., Brunati A.M. et al. // Free Radic. Biol. Med. 2013. V. 55. P. 27–35.
- Bayer S.B., Low F.M., Hampton M.B., Winterbourn C.C. // Free Radic. Res. 2016. V. 50. P. 1329–1339.
- Long M.J., Aye Y. // Chem. 2016. V. 29. № 10. P. 1575–1582.
- Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Biochemistry (Moscow). 2019. V. 84. Suppl. 1. P. S206–S224.
- Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Appl. Biochem. Microbiol. 2017. V. 53. № 3. P. 273–289.
- Hsiao H., ., ., ., . // 2019. V. 48. P. 9431–9453.
- Rabbani N., Thornalley P.J. // Diabetes. 2014. V. 63. P. 50–52.
- Kosmachevskaya O.V., Novikova N.N., Topunov A.F. // Antioxidants. 2021. V. 10. № 2. e253. https://doi.org/10.3390/antiox10020253
- Pugachenko I.S., Nasybullina E.I., Kosmachevskaya O.V., Shumaev K.B., Topunov A.F. // Appl. Biochem. Microbiol. 2023. V. 59. № 5. P. 561–569.
- Shumaev K.B., Kosmachevskaya O.V., Nasybullina E.I., Ruuge E.K., Кalenikova E.I., Topunov A.F. // Int. J. Mol. Sci. 2023. V. 24. № 24. e17236. https://doi.org/10.3390/ijms242417236
- Shumaev K.B., Gubkina S.A., Vanin A.F., Burbaev D.Sh., Mokh V.P., Topunov A.V., Ruuge E.K. // Biophysics. 2013. V. 58. № 2. P. 172–177.
- Fu T.-T., Shen L. // Front. Pharmacol. 2022. V. 13. e850813. https://doi.org/10.3389/fphar.2022.850813
- Cheah I.K., Halliwell B. // Biochim. Biophys. Acta. 2012. V. 1822. P. 784–793.
- Malathy D., Anusha D., Karthika K., Punnagai K. // J. Clin. Diagn. Res. 2023. V. 17. № 7. P. FC01-FC05.
- Shumaev K.B., Gorudko I.V., Kosmachevskaya O., Grigoryeva D., Panasenko O.M., Vanin A. et al. // Oxid. Med. Cell. Longev. 2019. V. 2019. e2798154. https://doi.org/10.1155/2019/2798154.
- Shumaev K.B., Kosmachevskaya O.V., Grachev D.I., Timoshin A.A., Topunov A.F., Lankin V.Z., Ruuge E.K. // Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry. 2021. V. 15. № 4. P. 313–319.
- Kosmachevskaya O.V., Nasybullina E.I., Shumaev K.B., Novikova N.N., Topunov A.F. // Int. J. Mol. Sci. 2021. V. 22. № 24. e13649. https://doi.org/10.3390/ijms222413649
- Шамова E.B., Бичан О.Д., Дpозд Е.C., Гоpудко И.В., Чижик C.А., Шумаев К.Б. и др. // Биофизика. 2011. Т. 56. № 2. С. 265–271.
- Nicolay J.P., Liebig G., Niemoeller O.M., Koka S., Ghashghaeinia M., Wieder T. et al. // Pflugers Arch. 2008. V. 456. P. 293–305.
- Lankin V., Belova E., Tikhaze A.K. // Biophysics. V. 62. № 2. P. 252–255.
- Белых И.А., Воловельская Е.Л., Зинченко В.Д. // Проблемы криобиологии. 2007. Т. 17. С. 237–242.
- Шевченко О.Г. // Радиационная биология. Радиоэкология. 2014. Т. 4. С. 377–384.
- Tesoriere L., D’Arpa D., Conti S., Giaccone V., Pintaudi A.M., Livrea M.A. // Pineal Researsh. 1999. V. 27. P. 95–105.
- Mendanha S.A., Anjos J.L.V., Silva A.H.M., Alonso A. // Braz. J. Med. Biol. Res. 2012. V. 45. P. 473–481.
- Phillips S.A., Thornalley P.J. // Biochem. Soc. Trans. 1993. V. 21. № 2. e163s. https://doi.org/10.1042/bst021163s
- Zeng J., Davies M.J. // Chem. Res. Toxicol. 2005. V. 18. P. 1232–1241.
- Beard K.M., Shangari N., Wu B., O’Brien P.J. // Mol. Cell Biochem. 2003. V. 252. P. 331–338.
- Nicolay J.P., Liebig G., Niemoeller O.M., Koka S., Ghashghaeinia M., Wieder T. et al. // Life Sci. 2010. V. 86. P. 133–138.
- Chen H.-J.C., Chen Y.-C., Hsiao C.-F., Chen P.-F. // Chem. Res. Toxicol. 2015. V. 28. P. 2377–2389.
- McMahon T.J., Stone A.E., Bonaventura J., Stamler J.S. // Am. J. Respir. Crit. Care Med. 1999. V. 159. № 3. P. A352.
- Stepuro T.L., Zinchuk V.V. // J. Physiol. Pharmacol. 2006. V. 57. № 1. P. 29–38.
- D’Alessandro A., Xia Y. // Curr. Opin. Hematol. 2020. V. 27. № 3. P. 155–162.
- Misra H.P., Fridovich I. // J. Biol. Chem. 1972. V. 247. P. 6960–6962.
- Kiefmann R., Rifkind J.M., Nagababu E., Bhattacharya J. // Blood. 2008. V. 111. P. 5205–5214.
- Crawford J.H., Isbell T.S., Huang Z., Shiva S., Chacko B.K., Schechter A.N. et al. // Blood. 2006. V. 107. P. 566–574.
- Abalenikhina Yu.V., Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 611–625.
- Yang J., Carrol K.S., Liebler D.C. // Molecular & Cellular Proteomics. 2016. V. 15. P. 1–11.
- Finelli M.J. // Front Aging Neurosci. 2020. V. 12. e254. https://doi.org/10.3389/fnagi.2020.00254
- Kosmachevskaya O.V., Topunov A.F. // Appl. Biochem. Microbiol. 2021. V. 57. № 5. P. 543–555.
- Barbarino F., Wäschenbach L., Cavalho-Lemos V., Dillenberger M., Becker K., Gohlke H., Cortese-Krott M.M. // Biol. Chem. 2020. V. 402. № 3. P. 317–331.
- Diederich L., Suvorava T., Sansone R., Keller T.C.S. 4th, Barbarino F., Sutton T.R. et al. // Front. Physiol. 2018. V. 9. e332. https://doi.org/10.3389/fphys.2018.00332
- Desai K.M., Wu L. // Drug Metabol. Drug. Interact. 2008. V. 23. P. 151–173.
- Kosmachevskaya O.V., Shumaev К.B., Nasybullina E.I., Gubkina S.А., Topunov А.F. // Hemoglobin. 2013. V. 37. № 3. P. 205–218.
- Svensson R., Alander J., Armstrong R.N., Morgenstern R. // Biochemistry. 2004. V. 43. P. 8869–8877.
- Turell L., Botti H., Carballal S., Radi R., Alvarez B. // J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2009. V. 877. № 28. P. 3384–3392.
- Биллах Х.М., Хасанов Н.Р., Ослопов В.Н., Чугунова Д.Н. // Практическая медицина. 2013. Т. 3. № 71. С. 34–36.
Arquivos suplementares
