Mechanisms of the antimicrobial action of fatty acids (review)
- Авторлар: Obukhova E.S.1, Murzina S.A.2
-
Мекемелер:
- Petrozavodsk State University
- Institute of Biology of the Karelian Research Center of the Russian Academy of Sciences
- Шығарылым: Том 60, № 6 (2024)
- Беттер: 580-588
- Бөлім: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/681114
- DOI: https://doi.org/10.31857/S0555109924060029
- EDN: https://elibrary.ru/QGYDTS
- ID: 681114
Дәйексөз келтіру
Аннотация
Among the diverse biological activities of fatty acids, the ability to kill or inhibit the growth of microorganisms can be distinguished. Despite the fact that the antibacterial mechanisms of fatty acids are not fully understood, the most common target of action is the cell membrane, where FAs mediate an increase in permeability and subsequent cell lysis, lead to disruption of the electron transport chain, uncoupling of oxidative phosphorylation, and inhibit enzymatic activity and nutrient intake. In addition to acting on cell membranes, FAs have the ability to disrupt the metabolic processes of microorganisms, inhibit DNA/RNA replication, and affect the expression of virulence genes. In addition, non-traditional mechanisms of the antimicrobial action of FAs are currently being described, such as inhibition of horizontal gene transfer, quorum sensing, and disruption of the efflux pump. The variety of antimicrobial mechanisms and a wide range of their activity determine the high biotechnological potential of fatty acids and make further studies of the mechanisms of action on biological systems relevant.
Негізгі сөздер
Толық мәтін

Авторлар туралы
E. Obukhova
Petrozavodsk State University
Хат алмасуға жауапты Автор.
Email: Obyhova_elena@mail.ru
Ресей, Petrozavodsk, 185003
S. Murzina
Institute of Biology of the Karelian Research Center of the Russian Academy of Sciences
Email: murzina.svetlana@gmail.com
Ресей, Petrozavodsk, 185910
Әдебиет тізімі
- Tocher D.R., Fonseca-Madrigal J., Bell J.G., Dick J.R., Henderson R.J., Sargent J.R. // Fish Physiol. Biochem. 2002. V. 26. P. 157–170.
- Hochachka P.W., Somero G.N. Bio-Chemical Adaptation: Mechanism and Process in Physiological Evolution. N.Y.: Oxford University Рress, 2002. 466 p.
- Батраков С.Г., Никитин Д.И., Ружицкий А.О., Оранская М.С. // Биоорганическая химия. 1998. Т. 24. № 10. P. 768–777.
- Antonny B., Vanni S., Shindou H., Ferreira T. // Trends in Cell Biology. 2015. V. 25. № 7. P. 427–436.
- Рабинович А.Л., Рипатти П.О. // Успехи современной биологии. 1994. Т. 114. Вып. 5. С. 581–594.
- Rabinovich A.L., Ripatti P.O., Balabaev N.K, Leermakers F.A.M. // Phys.Rev. E 67. 2003. V. 67. № 1: е011909. https://doi.org/10.1103/PhysRevE.67.011909
- Kenny J.G., Ward D., Josefsson E., Jonsson I.M., Hinds J., Rees H.H., Lindsay J.A., Tarkowski A., Horsburgh M.J. // PLoS One. 2009. V. . № 2. e4344. https://doi.org/10.1371/journal.pone.0004344
- van Eijk E., Wittekoek B., Kuijper E.J., Smits W.K. // J. Antimicrob. Chemother. 2017. V.72. № 5. P. 1275–1284.
- Kabara J., Swieczkowski D., Conley A., Truant J. // J. Antimicrob Agents Chemother. 1972.V. 2. № 1. Р. 23–28.
- Yoon B.K., Jackman J.A., Valle-González E.R., Cho N.J. // Int. J. Mol. Sci. 2018. V. 19. № 4. е1114. https://doi.org/10.3390/ijms19041114
- Zheng C.J, Yoo J.S., Lee T.G., Cho H.Y., Kim Y.H., Kim W.G. // FEBS Lett. 2005. V. 579. № 23. Р. 5157–5162.
- Desbois A.P., Smith V.J. // Appl. Microbiol Biotechnol. 2010. V. 85. Р. 1629–1642.
- Desbois A.P. // Recent Pat. Antiinfect. Drug Discov. 2012. V. 7. № 2. Р. 111–122.
- Jackman J.A., Yoon B.K., Li D., Cho N.J. // Molecules. 2016. V. 21. № 3. е305. https://doi.org/10.3390/molecules21030305
- Fischer C.L. // Antibiotics. 2020. V. 9. № 2. е75. https://doi.org/10.3390/antibiotics9020075
- Carson D.D., Daneo-Moore L. // J. Bacteriol. 1980. V. 141. № 3. Р. 1122–1126.
- Thompson L., Cockayne A., Spiller R.C. // Gut. 1994. V. 35. № 11. Р. 1557–1561.
- Bergsson G., Arnfinnsson J., Steingrímsson O., Thormar H. // APMIS. 2001. V. 109. № 10. Р. 670–678.
- Avis T.J., Bélanger R.R. // Appl. Environ. Microbiol. 2001. V. 67. № 2. Р. 956–60.
- Guimarães A., Venâncio A. // Toxins. 2022. V. 14. № 3. e188. https://doi.org/10.3390/toxins14030188
- Greenway D.L., Dyke K.G. // J. Gen. Microbiol. 1979. V. 115. № 1. Р. 233–245.
- Won S.R., Hong M.J., Kim Y.M., Li C.Y., Kim J.W., Rhee H.I. // FEBS Lett. 2007. V. 581. № 25. Р. 4999–5002.
- Casillas-Vargas G., Ocasio-Malavé C., Medina S., Morales-Guzmán C., Del Valle R.G., Carballeira N.M., Sanabria-Ríos D.J. // Prog. Lipid Res. 2021. V. 82. e101093. https:// doi.org/10.1016/j.plipres.2021.101093
- Parsons J.B., Yao J., Frank M.W., Jackson P., Rock C.O. // J. Bacteriol. 2012. V. 194. № 19. P. 5294-304.
- Li X.C., Jacob M.R., ElSohly H.N., Nagle D.G., Smillie T.J., Walker L.A. et al. // J. Nat. Prod. 2003. V. 66. № 8. P. 1132-1135.
- Sanabria-Ríos D.J., Morales-Guzmán C., Mooney J., Medina S., Pereles-De-León T., Rivera-Román A. et al. // Lipids. 2020. V. 55. № 2 Р. 101–116.
- Tomašič T., Katsamakas S., Hodnik Ž., Ilaš J., Brvar M., Solmajer T. et al. // J. Med. Chem. 2015. V. 58. № 14. Р. 5501–5521.
- Withey J.H., Nag D., Plecha S.C., Sinha R., Koley H. // Antimicrob. Agents Chemother. 2015. V. 59. № 12. Р. 7471–7476.
- Liaw S.J., Lai H.C., Wang W.B. // Infect Immun. 2004. V. 72. № 12. P. 6836–6845.
- Clarke S.R., Mohamed R., Bian L., Routh A.F., Kokai-Kun J.F., Mond J.J. et al. // Cell Host Microbe. 2007. V. 1. № 3. Р. 199–212.
- Stenz L., François P., Fischer A., Huyghe A., Tangomo M., Hernandez D. et al. // FEMS Microbiol. Lett. 2008. V. 287. № 2. Р. 149–155.
- Davies D.G., Marques C.N. // J. Bacteriol. 2009. V. 191. № 5. Р. 1393–1403.
- Nicol M., Alexandre S., Luizet J.B., Skogman M., Jouenne T., Salcedo S.P., Dé E. // Int. J. Mol. Sci. 2018. V. 19. № 1. е214. https://doi.org/10.3390/ijms19010214
- Fluhr J.W., Kao J., Jain M., Ahn S.K., Feingold K.R., Elias P.M. // J. Invest. Dermatol. 2001. V. 117. № 1. Р. 44–51.
- Hiltunen T., Virta M., Laine A.L. // Philosophical Transactions of the Royal Society B: Biological. 2017. V. 372. № 1712. P. 1–7.
- Getino M., Sanabria-Ríos D.J., Fernández-López R., Campos-Gómez J., Sánchez-López J.M., Fernández A., Carballeira N.M., de la Cruz F. // mBio. 2015. V. 6. № 5. e01032-15. https://doi.org/10.1128/mbio.01032-15
- Palencia-Gándara C., Getino M., Moyano G., Redondo S., Fernández-López R., González-Zorn B., de la Cruz F. // mBio. 2021. V. 12. № 4. е8406284. https://doi.org/10.1128/mbio.01277-21
- Rémy B., Mion S., Plener L., Elias M., Chabrière E., Daudé D. // Front. Pharmacol. 2018. V. 9. e203. https://doi.org/10.3389/fphar.2018.00203
- Widmer K.W., Soni K.A., Hume M.E., Beier R.C., Jesudhasan P., Pillai S.D. // J. Food Sci. 2007. V. 72. № 9. Р. M363–М368.
- Lee J.H., Kim Y.G., Khadke S.K., Lee J. // Microb. Biotechnol. 2021. V. 14. № 4. Р. 1353–1366.
- Марданова А.М., Богомольная Л.М., Романова Ю.Д., Шарипова М.Р. // Микробиология. 2014. № 1.С. 3. С. 54–59.
- Blanco P., Hernando-Amado S., Reales-Calderon J.A., Corona F., Lira F., Alcalde-Rico M., Bernardini A., Sanchez M.B., Martinez J.L. // Microorganisms. 2016. V. 4. № 1. е14. https://doi.org/10.3390/microorganisms4010014
- Baharoglu Z., Mazel D. // Antimicrob. Agents Chemother. 2011. V. 55. № 5. Р. 2438–2441.
- Dasagrandhi C., Kim Y.S., Kim I.H., Hou C.T., Kim H.R. // Indian J. Microbiol. 2017. V. 57. № 4. Р. 461–469.
- Costa S.S., Sobkowiak B., Parreira R., Edgeworth J.D., Viveiros M., Clark T.G. et al. // Front. Genet. 2019. V. 9. e710. https://doi.org/10.3389/fgene.2018.00710
- Sun C.Q., O’Connor C.J., Roberton A.M. // FEMS Immunol. Med. Microbiol. 2003. V. 36. № 1–2. P. 9–17.
- Wille J.J., Kydonieus A. // Skin Pharmacol. Appl. Skin Physiol. 2003. V. 16. № 3. Р. 176–187.
- Anzaku A.A., Akyala J.I., Juliet A., et al. // Ann. Clin. Lab. Res. 2017. 5: 2.
- Nagase S., Matsue M., Mori Y., Honda-Ogawa M., Sugitani K., Sumitomo T. et al. // J. Wellness Health Care. 2017. V. 41. № 1. Р. 87–95.
- Kitahara T., Koyama N., Matsuda J., Aoyama Y., Hirakata Y., Kamihira S. et al. // Biol. Pharm. Bull. 2004. V. 27. № 9. P. 1321–1326.
- Watanabe T., Yamamoto Y., Miura M., Konno H., Yano S., Nonomura Y. // J. Oleo Sci. 2019. V. 68. № 3. P. 291–296.
- Yang H.T., Chen J.W., Rathod J., Jiang Y.Z., Tsai P.J., Hung Y.P. et al. // Front Microbiol. 2017. V. 8. e2635. https://doi.org/10.3389/fmicb.2017.02635
- Shilling M., Matt L., Rubin E., Visitacion M.P., Haller N.A., Grey S.F., Woolverton C.J. // J. Med. Food. 2013. V. 16. № 12. Р. 1079–1085.
- Undecylenic acid. Monograph. Altern. Med. Rev. 2002. V. 7. № 1. Р. 68–70.
- Marounek M., Skřivanová E., Rada V. // Folia Microbiologica. 2003. V. 48. P. 731–735.
- Dubos R.J. // J. Exp. Med. 1947. V. 85. № 1. P. 9–22.
- Souza J.L., da Silva A.F., Carvalho P.H., Pacheco B.S., Pereira C.M., Lund R.G. // Arch. Oral. Biol. 2014. V. 5. № 9. P. 880–886.
- Choi W.H. // Asian Pac. J. Trop. Med. 2016. V. 9. № 2. Р. 125–129.
- Sun M., Dong J., Xia Y., Shu R. // Microb Pathog. 2017. V. 107. P. 212–218.
- Coraça-Huber D.C., Steixner S., Wurm A., Nogler M. // Biomedicines. 2021. V. 9. № 4. e334. https://doi.org/10.3390/biomedicines9040334
- Sun M., Zhou Z., Dong J., Zhang J., Xia Y., Shu R. // Microb. Pathog. 2016. V. 99. P. 196–203.
- Correia M., Michel V., Matos A.A., Carvalho P., Oliveira M.J., Ferreira R.M., Dillies M.A., Huerre M., Seruca R., Figueiredo C., Machado J.C., Touati E. // PLoS One. 2012. V. 7. № 4. e35072. https://doi.org/10.1371/journal.pone.0035072
- Korosh T., Jordan K.D., Wu J.S., Yarlett N., Upmacis R.K. // J. Eukaryot. Microbiol. 2016. V. 63. № 2. P 153–161.
- Seabra C.L., Nunes C., Gomez-Lazaro M., Correia M., Machado J.C., Gonçalves I.C. et al. // Int. J. Pharm. 2017. V. 519. № 1–2. P. 128–137.
- Das U.N. // J. Adv. Res. 2018. V. 11. P. 57–66.
Қосымша файлдар
