Mechanisms of the antimicrobial action of fatty acids (review)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Among the diverse biological activities of fatty acids, the ability to kill or inhibit the growth of microorganisms can be distinguished. Despite the fact that the antibacterial mechanisms of fatty acids are not fully understood, the most common target of action is the cell membrane, where FAs mediate an increase in permeability and subsequent cell lysis, lead to disruption of the electron transport chain, uncoupling of oxidative phosphorylation, and inhibit enzymatic activity and nutrient intake. In addition to acting on cell membranes, FAs have the ability to disrupt the metabolic processes of microorganisms, inhibit DNA/RNA replication, and affect the expression of virulence genes. In addition, non-traditional mechanisms of the antimicrobial action of FAs are currently being described, such as inhibition of horizontal gene transfer, quorum sensing, and disruption of the efflux pump. The variety of antimicrobial mechanisms and a wide range of their activity determine the high biotechnological potential of fatty acids and make further studies of the mechanisms of action on biological systems relevant.

Толық мәтін

Рұқсат жабық

Авторлар туралы

E. Obukhova

Petrozavodsk State University

Хат алмасуға жауапты Автор.
Email: Obyhova_elena@mail.ru
Ресей, Petrozavodsk, 185003

S. Murzina

Institute of Biology of the Karelian Research Center of the Russian Academy of Sciences

Email: murzina.svetlana@gmail.com
Ресей, Petrozavodsk, 185910

Әдебиет тізімі

  1. Tocher D.R., Fonseca-Madrigal J., Bell J.G., Dick J.R., Henderson R.J., Sargent J.R. // Fish Physiol. Biochem. 2002. V. 26. P. 157–170.
  2. Hochachka P.W., Somero G.N. Bio-Chemical Adaptation: Mechanism and Process in Physiological Evolution. N.Y.: Oxford University Рress, 2002. 466 p.
  3. Батраков С.Г., Никитин Д.И., Ружицкий А.О., Оранская М.С. // Биоорганическая химия. 1998. Т. 24. № 10. P. 768–777.
  4. Antonny B., Vanni S., Shindou H., Ferreira T. // Trends in Cell Biology. 2015. V. 25. № 7. P. 427–436.
  5. Рабинович А.Л., Рипатти П.О. // Успехи современной биологии. 1994. Т. 114. Вып. 5. С. 581–594.
  6. Rabinovich A.L., Ripatti P.O., Balabaev N.K, Leermakers F.A.M. // Phys.Rev. E 67. 2003. V. 67. № 1: е011909. https://doi.org/10.1103/PhysRevE.67.011909
  7. Kenny J.G., Ward D., Josefsson E., Jonsson I.M., Hinds J., Rees H.H., Lindsay J.A., Tarkowski A., Horsburgh M.J. // PLoS One. 2009. V. . № 2. e4344. https://doi.org/10.1371/journal.pone.0004344
  8. van Eijk E., Wittekoek B., Kuijper E.J., Smits W.K. // J. Antimicrob. Chemother. 2017. V.72. № 5. P. 1275–1284.
  9. Kabara J., Swieczkowski D., Conley A., Truant J. // J. Antimicrob Agents Chemother. 1972.V. 2. № 1. Р. 23–28.
  10. Yoon B.K., Jackman J.A., Valle-González E.R., Cho N.J. // Int. J. Mol. Sci. 2018. V. 19. № 4. е1114. https://doi.org/10.3390/ijms19041114
  11. Zheng C.J, Yoo J.S., Lee T.G., Cho H.Y., Kim Y.H., Kim W.G. // FEBS Lett. 2005. V. 579. № 23. Р. 5157–5162.
  12. Desbois A.P., Smith V.J. // Appl. Microbiol Biotechnol. 2010. V. 85. Р. 1629–1642.
  13. Desbois A.P. // Recent Pat. Antiinfect. Drug Discov. 2012. V. 7. № 2. Р. 111–122.
  14. Jackman J.A., Yoon B.K., Li D., Cho N.J. // Molecules. 2016. V. 21. № 3. е305. https://doi.org/10.3390/molecules21030305
  15. Fischer C.L. // Antibiotics. 2020. V. 9. № 2. е75. https://doi.org/10.3390/antibiotics9020075
  16. Carson D.D., Daneo-Moore L. // J. Bacteriol. 1980. V. 141. № 3. Р. 1122–1126.
  17. Thompson L., Cockayne A., Spiller R.C. // Gut. 1994. V. 35. № 11. Р. 1557–1561.
  18. Bergsson G., Arnfinnsson J., Steingrímsson O., Thormar H. // APMIS. 2001. V. 109. № 10. Р. 670–678.
  19. Avis T.J., Bélanger R.R. // Appl. Environ. Microbiol. 2001. V. 67. № 2. Р. 956–60.
  20. Guimarães A., Venâncio A. // Toxins. 2022. V. 14. № 3. e188. https://doi.org/10.3390/toxins14030188
  21. Greenway D.L., Dyke K.G. // J. Gen. Microbiol. 1979. V. 115. № 1. Р. 233–245.
  22. Won S.R., Hong M.J., Kim Y.M., Li C.Y., Kim J.W., Rhee H.I. // FEBS Lett. 2007. V. 581. № 25. Р. 4999–5002.
  23. Casillas-Vargas G., Ocasio-Malavé C., Medina S., Morales-Guzmán C., Del Valle R.G., Carballeira N.M., Sanabria-Ríos D.J. // Prog. Lipid Res. 2021. V. 82. e101093. https:// doi.org/10.1016/j.plipres.2021.101093
  24. Parsons J.B., Yao J., Frank M.W., Jackson P., Rock C.O. // J. Bacteriol. 2012. V. 194. № 19. P. 5294-304.
  25. Li X.C., Jacob M.R., ElSohly H.N., Nagle D.G., Smillie T.J., Walker L.A. et al. // J. Nat. Prod. 2003. V. 66. № 8. P. 1132-1135.
  26. Sanabria-Ríos D.J., Morales-Guzmán C., Mooney J., Medina S., Pereles-De-León T., Rivera-Román A. et al. // Lipids. 2020. V. 55. № 2 Р. 101–116.
  27. Tomašič T., Katsamakas S., Hodnik Ž., Ilaš J., Brvar M., Solmajer T. et al. // J. Med. Chem. 2015. V. 58. № 14. Р. 5501–5521.
  28. Withey J.H., Nag D., Plecha S.C., Sinha R., Koley H. // Antimicrob. Agents Chemother. 2015. V. 59. № 12. Р. 7471–7476.
  29. Liaw S.J., Lai H.C., Wang W.B. // Infect Immun. 2004. V. 72. № 12. P. 6836–6845.
  30. Clarke S.R., Mohamed R., Bian L., Routh A.F., Kokai-Kun J.F., Mond J.J. et al. // Cell Host Microbe. 2007. V. 1. № 3. Р. 199–212.
  31. Stenz L., François P., Fischer A., Huyghe A., Tangomo M., Hernandez D. et al. // FEMS Microbiol. Lett. 2008. V. 287. № 2. Р. 149–155.
  32. Davies D.G., Marques C.N. // J. Bacteriol. 2009. V. 191. № 5. Р. 1393–1403.
  33. Nicol M., Alexandre S., Luizet J.B., Skogman M., Jouenne T., Salcedo S.P., Dé E. // Int. J. Mol. Sci. 2018. V. 19. № 1. е214. https://doi.org/10.3390/ijms19010214
  34. Fluhr J.W., Kao J., Jain M., Ahn S.K., Feingold K.R., Elias P.M. // J. Invest. Dermatol. 2001. V. 117. № 1. Р. 44–51.
  35. Hiltunen T., Virta M., Laine A.L. // Philosophical Transactions of the Royal Society B: Biological. 2017. V. 372. № 1712. P. 1–7.
  36. Getino M., Sanabria-Ríos D.J., Fernández-López R., Campos-Gómez J., Sánchez-López J.M., Fernández A., Carballeira N.M., de la Cruz F. // mBio. 2015. V. 6. № 5. e01032-15. https://doi.org/10.1128/mbio.01032-15
  37. Palencia-Gándara C., Getino M., Moyano G., Redondo S., Fernández-López R., González-Zorn B., de la Cruz F. // mBio. 2021. V. 12. № 4. е8406284. https://doi.org/10.1128/mbio.01277-21
  38. Rémy B., Mion S., Plener L., Elias M., Chabrière E., Daudé D. // Front. Pharmacol. 2018. V. 9. e203. https://doi.org/10.3389/fphar.2018.00203
  39. Widmer K.W., Soni K.A., Hume M.E., Beier R.C., Jesudhasan P., Pillai S.D. // J. Food Sci. 2007. V. 72. № 9. Р. M363–М368.
  40. Lee J.H., Kim Y.G., Khadke S.K., Lee J. // Microb. Biotechnol. 2021. V. 14. № 4. Р. 1353–1366.
  41. Марданова А.М., Богомольная Л.М., Романова Ю.Д., Шарипова М.Р. // Микробиология. 2014. № 1.С. 3. С. 54–59.
  42. Blanco P., Hernando-Amado S., Reales-Calderon J.A., Corona F., Lira F., Alcalde-Rico M., Bernardini A., Sanchez M.B., Martinez J.L. // Microorganisms. 2016. V. 4. № 1. е14. https://doi.org/10.3390/microorganisms4010014
  43. Baharoglu Z., Mazel D. // Antimicrob. Agents Chemother. 2011. V. 55. № 5. Р. 2438–2441.
  44. Dasagrandhi C., Kim Y.S., Kim I.H., Hou C.T., Kim H.R. // Indian J. Microbiol. 2017. V. 57. № 4. Р. 461–469.
  45. Costa S.S., Sobkowiak B., Parreira R., Edgeworth J.D., Viveiros M., Clark T.G. et al. // Front. Genet. 2019. V. 9. e710. https://doi.org/10.3389/fgene.2018.00710
  46. Sun C.Q., O’Connor C.J., Roberton A.M. // FEMS Immunol. Med. Microbiol. 2003. V. 36. № 1–2. P. 9–17.
  47. Wille J.J., Kydonieus A. // Skin Pharmacol. Appl. Skin Physiol. 2003. V. 16. № 3. Р. 176–187.
  48. Anzaku A.A., Akyala J.I., Juliet A., et al. // Ann. Clin. Lab. Res. 2017. 5: 2.
  49. Nagase S., Matsue M., Mori Y., Honda-Ogawa M., Sugitani K., Sumitomo T. et al. // J. Wellness Health Care. 2017. V. 41. № 1. Р. 87–95.
  50. Kitahara T., Koyama N., Matsuda J., Aoyama Y., Hirakata Y., Kamihira S. et al. // Biol. Pharm. Bull. 2004. V. 27. № 9. P. 1321–1326.
  51. Watanabe T., Yamamoto Y., Miura M., Konno H., Yano S., Nonomura Y. // J. Oleo Sci. 2019. V. 68. № 3. P. 291–296.
  52. Yang H.T., Chen J.W., Rathod J., Jiang Y.Z., Tsai P.J., Hung Y.P. et al. // Front Microbiol. 2017. V. 8. e2635. https://doi.org/10.3389/fmicb.2017.02635
  53. Shilling M., Matt L., Rubin E., Visitacion M.P., Haller N.A., Grey S.F., Woolverton C.J. // J. Med. Food. 2013. V. 16. № 12. Р. 1079–1085.
  54. Undecylenic acid. Monograph. Altern. Med. Rev. 2002. V. 7. № 1. Р. 68–70.
  55. Marounek M., Skřivanová E., Rada V. // Folia Microbiologica. 2003. V. 48. P. 731–735.
  56. Dubos R.J. // J. Exp. Med. 1947. V. 85. № 1. P. 9–22.
  57. Souza J.L., da Silva A.F., Carvalho P.H., Pacheco B.S., Pereira C.M., Lund R.G. // Arch. Oral. Biol. 2014. V. 5. № 9. P. 880–886.
  58. Choi W.H. // Asian Pac. J. Trop. Med. 2016. V. 9. № 2. Р. 125–129.
  59. Sun M., Dong J., Xia Y., Shu R. // Microb Pathog. 2017. V. 107. P. 212–218.
  60. Coraça-Huber D.C., Steixner S., Wurm A., Nogler M. // Biomedicines. 2021. V. 9. № 4. e334. https://doi.org/10.3390/biomedicines9040334
  61. Sun M., Zhou Z., Dong J., Zhang J., Xia Y., Shu R. // Microb. Pathog. 2016. V. 99. P. 196–203.
  62. Correia M., Michel V., Matos A.A., Carvalho P., Oliveira M.J., Ferreira R.M., Dillies M.A., Huerre M., Seruca R., Figueiredo C., Machado J.C., Touati E. // PLoS One. 2012. V. 7. № 4. e35072. https://doi.org/10.1371/journal.pone.0035072
  63. Korosh T., Jordan K.D., Wu J.S., Yarlett N., Upmacis R.K. // J. Eukaryot. Microbiol. 2016. V. 63. № 2. P 153–161.
  64. Seabra C.L., Nunes C., Gomez-Lazaro M., Correia M., Machado J.C., Gonçalves I.C. et al. // Int. J. Pharm. 2017. V. 519. № 1–2. P. 128–137.
  65. Das U.N. // J. Adv. Res. 2018. V. 11. P. 57–66.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. 1. Structural formulas of stearic acid, 18:0 – saturated fatty acid, oleic acid, 18:1(n-9) – monounsaturated fatty acid, alpha-linolenic acid, 18:3(n-3) – polyunsaturated fatty acid (n-3) family.

Жүктеу (191KB)
3. 2. A generalizing diagram of the known mechanisms of antibacterial action of fatty acids.

Жүктеу (275KB)

© Russian Academy of Sciences, 2024