Mycoplasma: properties, detection and decontamination methods of cell cultures and viral strains (Review)
- Authors: Leonovich O.A.1
-
Affiliations:
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
- Issue: Vol 60, No 5 (2024)
- Pages: 435-444
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/681850
- DOI: https://doi.org/10.31857/S0555109924050011
- EDN: https://elibrary.ru/QUBAGW
- ID: 681850
Cite item
Abstract
Mycoplasma contamination of continuous cell cultures and collection viral strains remains a serious problem in the biotechnology industry and experimental research. The frequency of mycoplasma contamination of cultured cell lines and viruses is 15–35%, in some cases up to 80%. Mycoplasmas cause various changes in cultures contaminated by them, up to cell death, have immunomodulatory properties, and affect the yield of certain viruses propagated in cell culture. Mycoplasmas do not have a cell wall, are able to pass through a bacterial filter, have the smallest genome (≈580 kb) among bacteria, and are capable of independent reproduction and existence. These microorganisms are resistant to most antibiotics commonly used in cell culture. Derivative groups of tetracyclines and fluoroquinolones (BM-Cyclin®, Ciprobay®, Baytril®, Plasmocin®, MRA) have shown certain effectiveness in decontaminating viral strains and cell cultures from mycoplasmas. Timely, highly sensitive detection and prevention of mycoplasma infection is of great importance. For routine scanning of mycoplasma infection of continuous cell cultures and viral strains, the methods of indicator cell culture (cytochemical) and polymerase chain reaction (PCR) are recommended, for more accurate – microbiological analysis of mycoplasma colonies on a special medium.
Full Text

About the authors
O. A. Leonovich
Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)
Author for correspondence.
Email: leonovich_oa@chumakovs.su
Russian Federation, Moscow, 108819
References
- Barile M.F., Rottem S. Rapid Diagnosis of Mycoplasmas. / Eds. I. Kahane, A. Adoni. N. Y.: FEMS, 1993. V. 62. P. 155–193.
- Drexler H.G., Uphoff C.C., Dirks W.G., MacLeod R.A.F. // Leukemia Research. 2002. V. 26. № 4. P. 329–333. https://doi.org/10.1016/s0145-2126(01)00136-9
- Hay R.J., Macy M.L. Chen T.R. // Nature. 1989. V. 339. № 6224. P. 487–488. https://doi.org/10.1038/339487a0
- Drexler H.G., Uphoff C.C. Encyclopedia of Cell Technology. / Eds R.S. Spier. N. Y.: John Wiley & Sons, Inc., 2003. V. 1. P. 609–627. https://doi.org/10.1002/0471250570.spi054
- Archer D.B., Daniels M.J. Plant and Insect Mycoplasma Techniques. / Eds M.J. Daniels, P.G. Markham. Springer, 1982. P. 9–39.
- Razin S. The prokaryotes / Eds A. Balows. N. Y.: 1991. P. 1937–1959.
- Tully J.G. Rapid Diagnosis of Mycoplasmas. / Eds I. Kahane, A. Adoni. N. Y.: FEMS, 1993. V. 62. P. 3–14. https://doi.org/10.1007/978-1-4615-2478-6_2
- Nicolson G.L. // Int. J. Clin. Med. 2019. V. 10. P. 477–522. https://doi.org/10.4236/ijcm.2019.1010041
- Baseman J.B., Tully J.G. // Emerg. Infect. Dis. 1997. V. 3. P. 21–32. https://doi.org/10.3 201/eid0301.970103
- Nicolson G.L., Nasralla M.Y., Franco A.R., Meirleir K De, Nicolson N.L., Ngwenya R., Haier J. // J. Chronic Fatigue Syndr. 2000. V. 6. P. 23–39. https://doi.org/10.1300/J092v06n03_03
- Taylor-Robinson D., Jensen J.S. // Clin. Microbiol. Rev. 2011. V. 24. P. 498–514. https://doi.org/10.1128/CMR.00006-11
- Razin S., Yogev D., Naot Y. // Microbiol. Mol. Biol. Rev. 1998. V. 62. P. 1094– 1156. https://doi.org/10.1128/MMBR.62.4.1094-1156.1998
- Razin S. // Microbiol Rev. 1985. V. 49. № 4. P. 419–455. https://doi.org/10.1128/mr.49.4.419-455.1985.
- Kokkayil P., Dhawan B. // Indian J. Med. Microbiol. 2015. V. 33. P. 205–214. https://doi.org/10.4103/0255-0857.154850
- Nicolson G.L., Nasralla M., Haier J., Nicolson N.L. // Biomedical Therapy. 1998. V. 16. P. 266–271.
- Lo S.C., Hayes M.M., Tully J.G., Wang R.Y.H., Kotani H., Pierce P.S. et al. // Int. J. Sys. Bact. 1992. V. 42. P. 357–364. https://doi.org/10.1099/00207713-42-3-357
- Drexler H.G., Uphoff C.C. // Cytotechnology. 2002. V. 39. P. 75–90. https://doi.org/10.1023/A:1022913015916
- Ferreira G., Santander A., Savio F., Guirado M., Sobrevia L., Nicolson G. L. // BBA - Molecular Basis of Disease. 2021. V. 1867. № 12 Р. 166264. https://doi.org/10.1016/j.bbadis.2021.166264
- Fadiel A., Eichenbaum K.D., Semary N.E., Epperson B. // Front. Biosci. 2007. V. 2. P. 2020–2028. https://doi.org/10.2741/2207
- Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D. et al. // Science. 1995. V. 270. № 5235. P. 397–404. https://doi.org/10.1126/science.270.5235.397
- Glass J.I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M.R., Maruf M. et al. // Proc. Natl. Acad. Sci. U. S. A. 2006. V. 103. № 2. P. 425–430. https://doi.org/10.1073/pnas.0510013103.
- Cazanave C., Manhart L.E., Bébéar C. // Med. Mal. Infect. 2012. V. 42. № 9. P. 381–392. https://doi.org/10.1016/j.medmal.2012.05.006.201
- Rottem S. // Physiol. Rev. 2003. V. 83. P. 417–432. https://doi.org/10.1152/physrev.00030.2002
- Zhang Q., Wise K.S. // Infect. Immun. 1996. V. 64. P. 2737–2744. https://doi.org/10.1128/iai.64.7.2737-2744.1996
- Burgos R., Pich O.Q., Ferrer-Navarro M., Baseman J.B., Querol E., Piño J. // J. Bacteriol. 2006. V. 188. P. 8627–8637. https://doi.org/10.1128/JB.00978-06
- Baseman J.B., Cole R.M., Krause D.C., Leith D.K. // J. Bacteriol. 1982. V. 151. № 3. P. 1514–1522. https://doi.org/10.1128/jb.151.3.1514-1522.1982
- McGarrity G.J., Kotani H., Burler H. Mycoplasmas: Molecular Biology and Pathogenesis. /Eds. J. Maniloff, R. N. McElhaney, L.R. Finch, J.B. Baseman. Washington. 1992. P. 445–456.
- He J., Liu M., Ye Z., Tan T., Liu X., You X., Zeng Y., Wu Y. // Mol. Med. Rep. 2016. V. 14. P. 4030–4036. https://doi.org/10.3892/mmr.2016.5765
- McGarrity G.J., Vanaman V., Sarama J. // Am. Soc. Microbiol. News. 1985. V. 51. P. 170–183.
- Christodoulides A., Gupta N., Yacoubian V., Maithel N., Parker J., Kelesidis T. // Front. Microbiol. 2018. V. 9. Р. 1682. https://doi.org/10.3389/fmicb.2018.01682
- Becker A., Kannan T.R., Taylor A.B., Pakhomova O.N., Zhang Y., Somarajan S.R. et al. // PNAS. 2015. V. 112. № 16. P. 5165–5170. https://doi.org/10.1073/pnas.1420308112
- Frisch M., Gradehandt G.,Mühlradt P.F. // Eur. J. Immunol. 1996. V. 26. P. 1050–1057. https://doi.org/10.1002/eji.1830260514
- Mühlradt P.F., Kieß M., Meyer H., Süßmuth R., Jung G. // J. Exp. Med. 1997. V. 185. P. 1951–1958. https://doi.org/10.1084/jem.185.11.1951
- Kaufmann A., Mühlradt P.F., Gemsa D., Sprenger H. // Infect. Immun. 1999. V. 67. P. 6303–6308. https://doi.org/10.1128/iai.67.12.6303-6308.1999
- Bendjennat M., Blanchard A., Loutfi M., Montagnier L., Bahraoui E. // Infect. Immun. 1999. V. 67. P. 4456–4462. https://doi.org/10.1128/iai.67.9.4456- 4462.1999
- Rawadi G., Roman-Roman S., Castedo M., Dutilleul V., Susin S., Marchetti P. et al.. // J. Immunol. 1996. V. 156. P. 670–678.
- Qin L., Chen Y. You X. // Front. Microbiol. 2019. V. 10. Р. 1934. https://doi.org/10.3389/fmicb.2019.01934
- Chaudhry R., Ghosh A., Chandolia A. // Indian Journal of Medical Microbiology. 2016. V. 34. № 1. P. 7–16. https://doi.org/10.4103/0255-0857.174112
- Uphoff C.C., Gignac S.M., Drexler H.G. // J. Immunol. Methods. 1992. V. 149. P. 43–53. https://doi.org/10.1016/s0022-1759(12)80047-0
- ОФС.1.7.2.0031.15. Приказ Минздрава России от 31.10.2018 N 749. Государственная фармакопея РФ. XIV издание. Том II. https://docs.rucml.ru/feml/pharma/v14/vol2/
- Citti C., Blanchard A. // Trends Microbiol. 2013. V. 21. № 4. P. 196–203. https://doi.org/10.1016/j.tim.2013.01.003
- Леонович О.А., Ишмухаметов А.А., Дзагурова Т.К. // Вет. Пат. 2020. V. 3. P. 29–37. https://doi.org/10.25690/VETPAT.2020.57.93.006
- European Pharmacopoeia (Ph. Eur.) 11.0. 2022. P. 210–215.
- Milne C., Daas A. // Pharmeuropa Bio. 2006. V. 1. P. 57–72.
- Nübling C.M., Baylis S.A., Hanschmann K-M., Montag-Lessing T., Chudy M., Kreß J. et al. // Appl. Environ. Microbiol. 2015. V. 81. № 17. P. 5694–5702. https://doi.org/10.1128/AEM.01150-15
- Rawadi G., Dussurget O. // PCR Methods Appl. 1995. V. 4. P. 199–208. https://doi.org/10.1101/gr.4.4.199
- Hopert A., Uphoff C.C., Wirth M., Hauser H., Drexler H.G. // J. Immunol. Methods. 1993. V. 164. P. 91–100. https://doi.org/10.1016/0022-1759(93)90279-g
- Freundt E.A., Andrews B.E., Erna H., Kunze M., Black F.T. // Zentralbl Bakteriol. Orig. 1973. V. 225/ № 1. P. 104–112.
- Evans G.L., Cekoric Jr T., Schoemakers M., Searcy R.L. // Antimicrob. Agents Chemother. (Bethesda). 1967. V. 7. P. 687–691.
- Staal S.P., Rowe W.P. // J. Virol. 1974. V. 14. № (6). P. 1620–1622. https://doi.org/10.1128/JVI.14.6.1620-1622.197
- Baronti C., Pastorino B., Charrel R., de Lamballerie X. // J. Viro. Methods. 2013. V. 187. № 2. P. 234–237. https://doi.org/10.1016/j.jviromet.2012.09.014
- Uphoff C.C., Denkmann S.A., Drexler H.G. // J. Biomed. Biotechnol. 2012. 267678. https://doi.org/10.1155/2012/267678
- Jung H., Wang S.-Y., Yang I-W., Hsueh D.-W., Yang W.J., Wang T.-H., Wang H.-S. // Chang Gung. Med. J. 2003. V. 26. № 4. P. 250–258.
- Drexler H.G., Gignac S.M., Hu Z.B., Hopert A., Fleckenstein E., Voges M., Uphoff C.C. // In Vitro Cell Dev. Biol. 1994. V. 30 A. P. 344–347. https://doi.org/10.1007/BF02631456
- Uphoff C.C., Gignac S.M., Drexler H.G. // J. Immunol. Methods. 1992. V. 149. P. 55–62. https://doi.org/10.1016/s0022-1759(12)80048-2
- Fleckenstein E., Uphoff C.C., Drexler H.G. // Leukemia. 1994. V. 8. P. 1424–1434.
- Uphoff C.C., Drexler H.G. // Curr. Protoc. Mol. Biol. 2014. V. 106. P. 28.4.1–28.4.14. https://doi.org/10.1002/0471142727.mb2804s106
- Gignac S.M., Uphoff C.C., MacLeod R.A., Steube K., Voges M., Drexler H.G. // Leukemia Res. 1992. V. 16. P. 815–822. https://doi.org/10.1016/0145-2126(92)90161-y
- Uphoff C.C., Drexler H.G. // In Vitro Cell Dev. Biol. Anim. 2002. V. 38. P. 86–89. https://doi.org/10.1290/1071-2690(2002)038<0086: CAEOMI>2.0.CO;2
- Hay R.J., Macy M.L., Chen T.R. // Nature. 1989. V. 339. P. 487–488. https://doi.org/10.1038/339487a0
- Uphoff C.C., Drexler H.G. // Human Cell. 2001. V. 14. P. 244–247.
- Huang X., Yu M., Wang B., Zhang Y., Xue J., Fu Y., Wang X. // J. Biol. Methods. 2023. 10:e99010005. https://doi.org/10.14440/jbm.2023.407.
- Bamba K., Takabe K., Daitoku H., Tanaka Y., Ohtani A., Ozawa M. et al. // Sens. Diagn. 2024. V. 3. P. 287–294. https://doi.org/10.1039/D3SD00175J
- Matini A., Naghib S.M. // Sensing and Bio-Sensing Research. 2024. V. 43. 100631. https://doi.org/10.1016/j.sbsr.2024.100631
- Liling W., Liwei L., Shen C., Jiawen Z., Huanlai X., Wentan Z. // Biochem. Biophys. Res. Commun. 2024. V. 698. 149540. https://doi.org/10.1016/j.bbrc.2024.149540
- Malave-Ramos D.R., Kennedy K., Key M.N., Dou Z., Kafsack B.F.C. // Microbiol. Spectr. 2022. V. 10. № 5:e0349722. https://doi.org/10.1128/spectrum.03497-22
Supplementary files
