Mycoplasma: properties, detection and decontamination methods of cell cultures and viral strains (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Mycoplasma contamination of continuous cell cultures and collection viral strains remains a serious problem in the biotechnology industry and experimental research. The frequency of mycoplasma contamination of cultured cell lines and viruses is 15–35%, in some cases up to 80%. Mycoplasmas cause various changes in cultures contaminated by them, up to cell death, have immunomodulatory properties, and affect the yield of certain viruses propagated in cell culture. Mycoplasmas do not have a cell wall, are able to pass through a bacterial filter, have the smallest genome (≈580 kb) among bacteria, and are capable of independent reproduction and existence. These microorganisms are resistant to most antibiotics commonly used in cell culture. Derivative groups of tetracyclines and fluoroquinolones (BM-Cyclin®, Ciprobay®, Baytril®, Plasmocin®, MRA) have shown certain effectiveness in decontaminating viral strains and cell cultures from mycoplasmas. Timely, highly sensitive detection and prevention of mycoplasma infection is of great importance. For routine scanning of mycoplasma infection of continuous cell cultures and viral strains, the methods of indicator cell culture (cytochemical) and polymerase chain reaction (PCR) are recommended, for more accurate – microbiological analysis of mycoplasma colonies on a special medium.

Full Text

Restricted Access

About the authors

O. A. Leonovich

Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences (Institute of Poliomyelitis)

Author for correspondence.
Email: leonovich_oa@chumakovs.su
Russian Federation, Moscow, 108819

References

  1. Barile M.F., Rottem S. Rapid Diagnosis of Mycoplasmas. / Eds. I. Kahane, A. Adoni. N. Y.: FEMS, 1993. V. 62. P. 155–193.
  2. Drexler H.G., Uphoff C.C., Dirks W.G., MacLeod R.A.F. // Leukemia Research. 2002. V. 26. № 4. P. 329–333. https://doi.org/10.1016/s0145-2126(01)00136-9
  3. Hay R.J., Macy M.L. Chen T.R. // Nature. 1989. V. 339. № 6224. P. 487–488. https://doi.org/10.1038/339487a0
  4. Drexler H.G., Uphoff C.C. Encyclopedia of Cell Technology. / Eds R.S. Spier. N. Y.: John Wiley & Sons, Inc., 2003. V. 1. P. 609–627. https://doi.org/10.1002/0471250570.spi054
  5. Archer D.B., Daniels M.J. Plant and Insect Mycoplasma Techniques. / Eds M.J. Daniels, P.G. Markham. Springer, 1982. P. 9–39.
  6. Razin S. The prokaryotes / Eds A. Balows. N. Y.: 1991. P. 1937–1959.
  7. Tully J.G. Rapid Diagnosis of Mycoplasmas. / Eds I. Kahane, A. Adoni. N. Y.: FEMS, 1993. V. 62. P. 3–14. https://doi.org/10.1007/978-1-4615-2478-6_2
  8. Nicolson G.L. // Int. J. Clin. Med. 2019. V. 10. P. 477–522. https://doi.org/10.4236/ijcm.2019.1010041
  9. Baseman J.B., Tully J.G. // Emerg. Infect. Dis. 1997. V. 3. P. 21–32. https://doi.org/10.3 201/eid0301.970103
  10. Nicolson G.L., Nasralla M.Y., Franco A.R., Meirleir K De, Nicolson N.L., Ngwenya R., Haier J. // J. Chronic Fatigue Syndr. 2000. V. 6. P. 23–39. https://doi.org/10.1300/J092v06n03_03
  11. Taylor-Robinson D., Jensen J.S. // Clin. Microbiol. Rev. 2011. V. 24. P. 498–514. https://doi.org/10.1128/CMR.00006-11
  12. Razin S., Yogev D., Naot Y. // Microbiol. Mol. Biol. Rev. 1998. V. 62. P. 1094– 1156. https://doi.org/10.1128/MMBR.62.4.1094-1156.1998
  13. Razin S. // Microbiol Rev. 1985. V. 49. № 4. P. 419–455. https://doi.org/10.1128/mr.49.4.419-455.1985.
  14. Kokkayil P., Dhawan B. // Indian J. Med. Microbiol. 2015. V. 33. P. 205–214. https://doi.org/10.4103/0255-0857.154850
  15. Nicolson G.L., Nasralla M., Haier J., Nicolson N.L. // Biomedical Therapy. 1998. V. 16. P. 266–271.
  16. Lo S.C., Hayes M.M., Tully J.G., Wang R.Y.H., Kotani H., Pierce P.S. et al. // Int. J. Sys. Bact. 1992. V. 42. P. 357–364. https://doi.org/10.1099/00207713-42-3-357
  17. Drexler H.G., Uphoff C.C. // Cytotechnology. 2002. V. 39. P. 75–90. https://doi.org/10.1023/A:1022913015916
  18. Ferreira G., Santander A., Savio F., Guirado M., Sobrevia L., Nicolson G. L. // BBA - Molecular Basis of Disease. 2021. V. 1867. № 12 Р. 166264. https://doi.org/10.1016/j.bbadis.2021.166264
  19. Fadiel A., Eichenbaum K.D., Semary N.E., Epperson B. // Front. Biosci. 2007. V. 2. P. 2020–2028. https://doi.org/10.2741/2207
  20. Fraser C.M., Gocayne J.D., White O., Adams M.D., Clayton R.A., Fleischmann R.D. et al. // Science. 1995. V. 270. № 5235. P. 397–404. https://doi.org/10.1126/science.270.5235.397
  21. Glass J.I., Assad-Garcia N., Alperovich N., Yooseph S., Lewis M.R., Maruf M. et al. // Proc. Natl. Acad. Sci. U. S. A. 2006. V. 103. № 2. P. 425–430. https://doi.org/10.1073/pnas.0510013103.
  22. Cazanave C., Manhart L.E., Bébéar C. // Med. Mal. Infect. 2012. V. 42. № 9. P. 381–392. https://doi.org/10.1016/j.medmal.2012.05.006.201
  23. Rottem S. // Physiol. Rev. 2003. V. 83. P. 417–432. https://doi.org/10.1152/physrev.00030.2002
  24. Zhang Q., Wise K.S. // Infect. Immun. 1996. V. 64. P. 2737–2744. https://doi.org/10.1128/iai.64.7.2737-2744.1996
  25. Burgos R., Pich O.Q., Ferrer-Navarro M., Baseman J.B., Querol E., Piño J. // J. Bacteriol. 2006. V. 188. P. 8627–8637. https://doi.org/10.1128/JB.00978-06
  26. Baseman J.B., Cole R.M., Krause D.C., Leith D.K. // J. Bacteriol. 1982. V. 151. № 3. P. 1514–1522. https://doi.org/10.1128/jb.151.3.1514-1522.1982
  27. McGarrity G.J., Kotani H., Burler H. Mycoplasmas: Molecular Biology and Pathogenesis. /Eds. J. Maniloff, R. N. McElhaney, L.R. Finch, J.B. Baseman. Washington. 1992. P. 445–456.
  28. He J., Liu M., Ye Z., Tan T., Liu X., You X., Zeng Y., Wu Y. // Mol. Med. Rep. 2016. V. 14. P. 4030–4036. https://doi.org/10.3892/mmr.2016.5765
  29. McGarrity G.J., Vanaman V., Sarama J. // Am. Soc. Microbiol. News. 1985. V. 51. P. 170–183.
  30. Christodoulides A., Gupta N., Yacoubian V., Maithel N., Parker J., Kelesidis T. // Front. Microbiol. 2018. V. 9. Р. 1682. https://doi.org/10.3389/fmicb.2018.01682
  31. Becker A., Kannan T.R., Taylor A.B., Pakhomova O.N., Zhang Y., Somarajan S.R. et al. // PNAS. 2015. V. 112. № 16. P. 5165–5170. https://doi.org/10.1073/pnas.1420308112
  32. Frisch M., Gradehandt G.,Mühlradt P.F. // Eur. J. Immunol. 1996. V. 26. P. 1050–1057. https://doi.org/10.1002/eji.1830260514
  33. Mühlradt P.F., Kieß M., Meyer H., Süßmuth R., Jung G. // J. Exp. Med. 1997. V. 185. P. 1951–1958. https://doi.org/10.1084/jem.185.11.1951
  34. Kaufmann A., Mühlradt P.F., Gemsa D., Sprenger H. // Infect. Immun. 1999. V. 67. P. 6303–6308. https://doi.org/10.1128/iai.67.12.6303-6308.1999
  35. Bendjennat M., Blanchard A., Loutfi M., Montagnier L., Bahraoui E. // Infect. Immun. 1999. V. 67. P. 4456–4462. https://doi.org/10.1128/iai.67.9.4456- 4462.1999
  36. Rawadi G., Roman-Roman S., Castedo M., Dutilleul V., Susin S., Marchetti P. et al.. // J. Immunol. 1996. V. 156. P. 670–678.
  37. Qin L., Chen Y. You X. // Front. Microbiol. 2019. V. 10. Р. 1934. https://doi.org/10.3389/fmicb.2019.01934
  38. Chaudhry R., Ghosh A., Chandolia A. // Indian Journal of Medical Microbiology. 2016. V. 34. № 1. P. 7–16. https://doi.org/10.4103/0255-0857.174112
  39. Uphoff C.C., Gignac S.M., Drexler H.G. // J. Immunol. Methods. 1992. V. 149. P. 43–53. https://doi.org/10.1016/s0022-1759(12)80047-0
  40. ОФС.1.7.2.0031.15. Приказ Минздрава России от 31.10.2018 N 749. Государственная фармакопея РФ. XIV издание. Том II. https://docs.rucml.ru/feml/pharma/v14/vol2/
  41. Citti C., Blanchard A. // Trends Microbiol. 2013. V. 21. № 4. P. 196–203. https://doi.org/10.1016/j.tim.2013.01.003
  42. Леонович О.А., Ишмухаметов А.А., Дзагурова Т.К. // Вет. Пат. 2020. V. 3. P. 29–37. https://doi.org/10.25690/VETPAT.2020.57.93.006
  43. European Pharmacopoeia (Ph. Eur.) 11.0. 2022. P. 210–215.
  44. Milne C., Daas A. // Pharmeuropa Bio. 2006. V. 1. P. 57–72.
  45. Nübling C.M., Baylis S.A., Hanschmann K-M., Montag-Lessing T., Chudy M., Kreß J. et al. // Appl. Environ. Microbiol. 2015. V. 81. № 17. P. 5694–5702. https://doi.org/10.1128/AEM.01150-15
  46. Rawadi G., Dussurget O. // PCR Methods Appl. 1995. V. 4. P. 199–208. https://doi.org/10.1101/gr.4.4.199
  47. Hopert A., Uphoff C.C., Wirth M., Hauser H., Drexler H.G. // J. Immunol. Methods. 1993. V. 164. P. 91–100. https://doi.org/10.1016/0022-1759(93)90279-g
  48. Freundt E.A., Andrews B.E., Erna H., Kunze M., Black F.T. // Zentralbl Bakteriol. Orig. 1973. V. 225/ № 1. P. 104–112.
  49. Evans G.L., Cekoric Jr T., Schoemakers M., Searcy R.L. // Antimicrob. Agents Chemother. (Bethesda). 1967. V. 7. P. 687–691.
  50. Staal S.P., Rowe W.P. // J. Virol. 1974. V. 14. № (6). P. 1620–1622. https://doi.org/10.1128/JVI.14.6.1620-1622.197
  51. Baronti C., Pastorino B., Charrel R., de Lamballerie X. // J. Viro. Methods. 2013. V. 187. № 2. P. 234–237. https://doi.org/10.1016/j.jviromet.2012.09.014
  52. Uphoff C.C., Denkmann S.A., Drexler H.G. // J. Biomed. Biotechnol. 2012. 267678. https://doi.org/10.1155/2012/267678
  53. Jung H., Wang S.-Y., Yang I-W., Hsueh D.-W., Yang W.J., Wang T.-H., Wang H.-S. // Chang Gung. Med. J. 2003. V. 26. № 4. P. 250–258.
  54. Drexler H.G., Gignac S.M., Hu Z.B., Hopert A., Fleckenstein E., Voges M., Uphoff C.C. // In Vitro Cell Dev. Biol. 1994. V. 30 A. P. 344–347. https://doi.org/10.1007/BF02631456
  55. Uphoff C.C., Gignac S.M., Drexler H.G. // J. Immunol. Methods. 1992. V. 149. P. 55–62. https://doi.org/10.1016/s0022-1759(12)80048-2
  56. Fleckenstein E., Uphoff C.C., Drexler H.G. // Leukemia. 1994. V. 8. P. 1424–1434.
  57. Uphoff C.C., Drexler H.G. // Curr. Protoc. Mol. Biol. 2014. V. 106. P. 28.4.1–28.4.14. https://doi.org/10.1002/0471142727.mb2804s106
  58. Gignac S.M., Uphoff C.C., MacLeod R.A., Steube K., Voges M., Drexler H.G. // Leukemia Res. 1992. V. 16. P. 815–822. https://doi.org/10.1016/0145-2126(92)90161-y
  59. Uphoff C.C., Drexler H.G. // In Vitro Cell Dev. Biol. Anim. 2002. V. 38. P. 86–89. https://doi.org/10.1290/1071-2690(2002)038<0086: CAEOMI>2.0.CO;2
  60. Hay R.J., Macy M.L., Chen T.R. // Nature. 1989. V. 339. P. 487–488. https://doi.org/10.1038/339487a0
  61. Uphoff C.C., Drexler H.G. // Human Cell. 2001. V. 14. P. 244–247.
  62. Huang X., Yu M., Wang B., Zhang Y., Xue J., Fu Y., Wang X. // J. Biol. Methods. 2023. 10:e99010005. https://doi.org/10.14440/jbm.2023.407.
  63. Bamba K., Takabe K., Daitoku H., Tanaka Y., Ohtani A., Ozawa M. et al. // Sens. Diagn. 2024. V. 3. P. 287–294. https://doi.org/10.1039/D3SD00175J
  64. Matini A., Naghib S.M. // Sensing and Bio-Sensing Research. 2024. V. 43. 100631. https://doi.org/10.1016/j.sbsr.2024.100631
  65. Liling W., Liwei L., Shen C., Jiawen Z., Huanlai X., Wentan Z. // Biochem. Biophys. Res. Commun. 2024. V. 698. 149540. https://doi.org/10.1016/j.bbrc.2024.149540
  66. Malave-Ramos D.R., Kennedy K., Key M.N., Dou Z., Kafsack B.F.C. // Microbiol. Spectr. 2022. V. 10. № 5:e0349722. https://doi.org/10.1128/spectrum.03497-22

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structural diagram of mycoplasma. The presence of a lipoprotein membrane with soluble contents in the form of proteins, RNA, DNA and the absence of a cell wall and nuclear membrane is shown [18].

Download (183KB)
3. Fig. 2. (a) Transmission electron microscopy of Mycoplasma agalactiae showing smooth cells and irregular spots of mycoplasma [41]. (b) Mycoplasma colonies on agar showing the typical fried egg shape on solid media, showing the apical structure by which mycoplasmas attach to the host cell.

Download (264KB)
4. Fig. 3. Staining of cell culture with Hoechst 33258 [42]. The sample was incubated for 3 days with a pure indicator culture, the cells were fixed, stained with Hoechst 33258 and observed under a fluorescence microscope (×40): (a) Vero cell culture without mycoplasma; (b) rounded nuclei of Vero cells and mycoplasma are visible as separate small hierarchical spots.

Download (230KB)

Copyright (c) 2024 Russian Academy of Sciences