The effect of space flight factors on the interaction of Escherichia coli with bacteriophage T7

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

For the first time, the interaction between bacteria and bacteriophage was studied under space conditions. The model system of E. coli and bacteriophage T7 was used. The results of the interaction depended on the duration of exposure of the system to space flight factors. During the first 2 days of microgravity exposure the virus replication rate in Space was higher than on Earth. The bacteria then have adapted to space conditions and acquired resistance to the bacteriophage, which persisted for 2 days after return to Earth. Over the next three days, the sensitivity of the E. coli to the T7 bacteriophage returned to its original level.

全文:

受限制的访问

作者简介

N. Sykilinda

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

编辑信件的主要联系方式.
Email: sykilinda@mail.ru
俄罗斯联邦, Moscow, 117997

A. Lukianova

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: sykilinda@mail.ru
俄罗斯联邦, Moscow, 117997

V. Lavrikova

JSC “BIOHIMMASH”

Email: sykilinda@mail.ru
俄罗斯联邦, Moscow, 127299

I. Kutnik

Yu.A. Gagarin Research and Test Cosmonaut Training Center

Email: sykilinda@mail.ru
俄罗斯联邦, Star City, Moscow region, 141160

N. Panin

Lomonosov Moscow State University

Email: sykilinda@mail.ru

Research Belozersky Institute of Physical and Chemical Biology

俄罗斯联邦, Moscow, 119991

N. Staritsyn

JSC “BIOHIMMASH”

Email: sykilinda@mail.ru
俄罗斯联邦, Moscow, 127299

K. Miroshnikov

Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences

Email: sykilinda@mail.ru
俄罗斯联邦, Moscow, 117997

参考

  1. Novikova N.D. // Microb. Ecol. 2004. V. 47. №. 2. P. 127–132.
  2. Novikova N., De Boever P., Poddubko S., Deshevaya E., Polikarpov N., Rakova N. et al. // Res. Microbiol. 2006. V. 157. № 1. P. 5–12.
  3. Zhang Y., Zhang L.T., Li Z.D., Xin C.X., Li X.Q., Wang X., Deng Y.L. // Microb. Ecol. 2019. V. 78. № 3. P. 631–650.
  4. Checinska Sielaff A., Urbaniak C., Mohan G.B.M., Stepanov V.G., Tran Q., Wood J.M. et al. // Microbiome. 2019. V. 7(1): 50. https://doi.org/10.1186/s40168-019-0666-x
  5. Ichijo T., Yamaguchi N., Tanigaki F., Shirakawa M., Nasu M. // NPJ Microgravity. 2016. V. 2. 16007. https://doi.org/10.1038/npjmgrav.2016.7
  6. Crucian B., Babiak-Vazquez A., Johnston S., Pierson D.L., Ott C.M., Sams C. // Int. J. Gen. Med. 2016. № 9. P. 383–391.
  7. Gray G.W., Sargsyan A.E., Davis J.R. // Aviat. Space Environ. Med. 2010. V. 81. №. 12. P. 1128–1132.
  8. Nickerson C.A., Ott C.M., Wilson J.W., Ramamurthy R., Pierson D.L. // Microbiol. Mol. Biol. Rev. 2004. V. 68. № 2. P. 345–361.
  9. Senatore G., Mastroleo F, Leys N., Mauriello G. // Future Microbiol. 2018. № 13. P. 831–847.
  10. Huang B., Li D.G., Huang Y., Liu C.T. // Mil. Med. Res. 2018. V. 5. № 1 :18. https://doi.org/10.1186/s40779-018-0162-9
  11. Horneck G., Klaus D.M., Mancinelli R.L. // Microbiol. Mol. Biol. Rev. 2010. V. 74. Р. 121–156.
  12. Kim W., Tengra F.K., Young Z., Shong J., Marchand N., Chan H.K., // PloS One. 2013. V. 8. № 4. e62437. https://doi.org/10.1371/journal.pone.0062437
  13. McLean R.J., Cassanto J.M., Barnes M.B., Koo J.H. // FEMS Microbiol. Lett. 2001. V. 195. № 2. P. 115–119.
  14. Рыбальченко О.В., Орлова О.Г., Вишневская О.Н., Капустина В.В., Потокин И.Л., Лаврикова В.В. // Журнал микробиологии, эпидемиологии и иммунобиологии. 2016. Т. 93. № 6. C. 3–10.
  15. Benoit M.R., Li W., Stodieck L.S., Lam K.S., Winther C.L., Roane T.M., Klaus D.M. // Appl. Microbiol. Biotechnol. 2006. V.70. №. 4. P. 403–411.
  16. Morrison M.D., Fajardo-Cavazos P., Nicholson W.L. // Appl Environ Microbiol. 2017. V. 83. № 21. e01584-17. https://doi.org/10.1128/AEM.01584-17
  17. Leys N.M., Hendrickx L., De Boever P., Baatout S., Mergeay M. // J. Biol. Regul. Homeost. Agents. 2004. V. 18. № 2. P. 193–199.
  18. Padgen M.R., Lera M.P., Parra M.P., Ricco A.J., Chin M., Chinn T.N. et al. // Life Sci. Space Res. (Amst). 2020. V. 18. № 24. https://doi.org/10.1016/j.lssr.2019.10.00719
  19. Zea L., Prasad N., Levy S.E., Stodieck L., Jones A., Shrestha S., Klaus D. A. // PLoS One. 2016. №. 11: e0164359. https://doi.org/10.1371/journal.pone.0164359
  20. Aunins T.R., Erickson K.E., Prasad N., Levy S.E., Jones A., Shrestha S. et al. // Front Microbiol. 2018. V. 9. №. 310. https://doi.org/10.3389/fmicb.2018.00310
  21. Zea L., Larsen M., Estante F., Qvortrup K., Moeller R., Dias de Oliveira S., et al. // Front Microbiol. 2017. V. 8. 1598. https://doi.org/10.3389/fmicb.2017.01598
  22. Urbaniak C., Sielaff A.C., Frey K.G., Allen J.E., Singh N., Jaing C., Wheeler K., Venkateswaran K. // Sci. Rep. 2018. №.8 (814). P. 1–23.
  23. Wilson J.W., Ott C.M., Höner zu Bentrup K., Ramamurthy R., Quick L., Porwollik S. et al. // Proc. Natl. Acad. Sci. U S A. 2007. V. 104. № 41. P. 16299–16304.
  24. Taylor P. // Infect Drug Resist. 2015. №. 8. P. 249–262.
  25. Kutter E.M., Kuhl S.J., Abedon S.T. // Future Microbiology. 2015. V. 10. №. 5. P. 685–688.
  26. Bourdin G., Navarro A., Sarker S.A., Pittet A.C., Qadri F., Sultana S. et al. // Microb Biotechnol. 2014. № 7(2). P. 165–176. https://doi.org/10.1111/1751-7915.12113
  27. Kropinski A.M. // Can. J. Infect. Dis. Med. Microbiol. 2006. V. 17. № 5. P. 297–306.
  28. Donlan R.M. // Trends Microbiol. 2009. № 17. P. 66–72.
  29. Latz S., Wahida A., Arif A., Hafner H., Hoss M., Ritter K., Horz H.P. // J. Basic Microbiol. 2016. V. 56. № 10. P. 1117–1123.
  30. Крылов С.В., Кропински А.М., Плетенева Е.А., Шабурова О.В., Буркальцева М.В., Мирошников К.А., Крылов В.Н. // Генетика. 2012. Т. 48. № 9. С. 1057–1067.
  31. Aleshkin A., Rubalsky E., Popova F., Bogun A., Evstigneev V., Pchelintsev S. et al. // EMBO Conference on Viruses of Microbes. Цюрих, Швейцария, 2014.
  32. Nabergoj D., Modic P., Podgornik A. // Microbiology Open. 2018. V. 7. № 2. e00558. https://doi.org/10.1002/mbo3.558

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Laying out the “Microvir” system in an open position with installed cassettes (a), external view of the “Microvir” cassette (b).

下载 (232KB)
3. Fig. 2. Photographs of the NA “Microvir” cassettes immediately after moving the contents of the upper wells to the lower ones in CE (a) and NE (b). Photographs of the NA “Microvir” cassettes after completion of cell lysis in CE (c) and NE (d).

下载 (563KB)
4. Fig. 3. Sensitivity of control E. coli cells from CE to bacteriophage T7 after the return of the Microvir NA from the ISS (a): 1 – 1 day, 2 – 2 days, 3 – 3 days (experiment of the second day), 4 – 3 days (experiment of the first day), 5 – 5 days (experiment of the second day), 6 – 5 days (experiment of the first day). Sensitivity of control E. coli cells from NE to bacteriophage T7 after the completion of the experiment (b): 1 – 1 day, 2 – 1 day, 3 – 3 days, 4 – 5 days.

下载 (184KB)

版权所有 © Russian Academy of Sciences, 2024