Methods for pre-processing cane to obtain enzymative hydrolysates with high sugar content
- Authors: Semenova M.V.1, Rozhkova A.M.1, Osipov D.O.1, Telitsin V.D.1, Rubtsova E.A.1, Kondrat’eva E.G.1, Vasil’eva I.S.1, Morozova O.V.1, Yaropolov A.I.1, Sinitsyn A.P.1
-
Affiliations:
- Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
- Issue: Vol 60, No 5 (2024)
- Pages: 524-535
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/681860
- DOI: https://doi.org/10.31857/S0555109924050109
- EDN: https://elibrary.ru/QSZFFG
- ID: 681860
Cite item
Abstract
Methods of cane pretreatment (grinding, hydrothermal treatment, treatment with acid or alkali solutions, organosolv, deep eutectic solvents) and their effect on its subsequent enzymatic hydrolysis by cellulases and hemicellulases complexes have been studied. Substrates with the highest reactivity were obtained by exposing the cane to a weakly alkaline deep eutectic solvent (DES) and an alkali solution. The depth of enzymatic hydrolysis of these pretreated substrates was 63 and 59%, and the degree of conversion of polysaccharides (cellulose and hemicellulose) into monosaccharides taking into account the yield of the substrate at the pre-processing stage was 60 and 34%, respectively. After pre-treatment of the cane with acid DES, water steam, water or water/organic solution of sulfuric acid the depth of enzymatic hydrolysis was 45, 25, 20 and 11%, and the degree of polysaccharide conversion was 26, 18, 13 and 10%, respectively. The industrial enzyme preparation Agrocell Plus with a predominant content of cellobiohydrolases and endoglucanases was most effective in hydrolyzing the dust fraction of cane, as well as cane pretreated with a solution of sulfuric acid or DES (acidic or alkaline). The industrial enzyme preparation Agroxil Plus, containing endoxylanase and cellobiohydrolases, was more effective in hydrolyzing cane after hydrothermal pretreatment or alkali solution. The results of the hydrolysis of cane pretreated with acidic or weakly alkaline DES under the action of individual (homogeneous) cellulases indicate that in both cases the key enzyme was cellobiohydrolase 1.
Full Text

About the authors
M. V. Semenova
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
A. M. Rozhkova
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Author for correspondence.
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
D. O. Osipov
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
V. D. Telitsin
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
E. A. Rubtsova
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
E. G. Kondrat’eva
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
I. S. Vasil’eva
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
O. V. Morozova
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
A. I. Yaropolov
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
A. P. Sinitsyn
Federal Research Center “Fundamentals of Biotechnology” of the Russian Academy of Sciences
Email: amrojkova@yahoo.com
Russian Federation, Moscow, 119071
References
- Гусаков А.В., Синицын А.П. // Химия биомассы: биотоплива и биопластики. М.: Научный мир, 2017. 789 с. ISBN 978-5-91522-451-2
- Количественный химический анализ растительного сырья. / Ред. В.И. Шарков, И.И. Куйбина, Ю.П. Соловьева, Т.А. Павлова. М.: Лесная промышленность, 1976. С. 63–64.
- Dibyajyoti H., Kumar P. // Process Biochem. 2020. V. 89. P. 110–133. https://doi.org/10.1016/j.procbio.2019.10.001
- Gusakov A.V. // Biofuels. 2013. V. 4. № 6. P. 567–569. https://doi.org/10.4155/bfs.13.55
- Teter S.A., Brandon S.K., Emme B. Enzymatic Processes and Enzyme Development in Diorefining // Advances in Biorefineries. 2014. P. 199–233. https://doi.org/10.1533/9780857097385.1.199
- Sun Q., Foston M., Meng X., Sawada D., Pingali S.V., O’Neill H. M.,et al. // Biotechnol. Biofuels. 2014. V. 7. № 150. P. 1–14. https://doi.org/10.1186/s13068- 014-0150-6
- Yang B., Dai Z., Ding S.-Y., Wyman C.E. // Biofuels. 2011. V. 2. № 4. P. 421–449. https://doi.org/10.4155/bfs.11.116
- Kumar P., Barrett D.M., Delwiche M.J., Stroeve P. // Ind. Eng. Chem. Res. 2009. V. 48. P. 3713–3729. https://doi.org/10.1021/ie801542g
- Karimi K., Taherzadeh M.J. // Bioresour. Technol. 2016. V. 200. P. 1008–1018. https://doi.org/10.1016/j.biortech.2015.11.022
- Liguori R., Ventorino V., Pepe O., Faraco V. // Appl. Microbiol. Biotechnol. 2016. V. 100. № 2. P. 597–611. https://doi.org/10.1007/s00253-015-7125-9
- He Y.-C., Ma C.-L., Yang B. // Fungal Cellulolytic Enzymes. Microbial production and application. / Ed. Xu Fang, Yinbo Qu. Springer. 2018. P. 1–25. https://doi.org/10.1007/978-981-13-0749-2_1
- Alvira P., Tomáspejó E., Ballesteros M., Negro M.J. // Bioresour. Technol. 2010. V. 101. № 13. P. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
- Paudel S.R., Banjara S.P., Choi O.K., Park K.Y., Kim Y.M., Lee J.W. // Bioresour. Technol. 2017. V. 245. P. 1194–1205. https://doi.org/10.1016/j.biortech.2017.08.182
- Hideno A., Inoue H., Tsukahara K., Fujimoto S., Minowa T. Inoue S., Endo T., Sawayama S. // Bioresour. Technol. 2009. V. 100. P. 2706–2711. https://doi.org/10.1016/j.biortech.2008.12.057
- Ghizzi G., Silva D., Couturier M., Berrin J.-G., Buléon A., Rouau, X. // Bioresour. Technol. 2012. V. 103. P. 192–210. https://doi.org/10.1016/j.biortech.2011.09.073
- Bobleter O., Concin R. // Cellulose Chemistry and Technol. 1979. V. 13. P. 583–593.
- Павлов И.Н. // Ползуновский вестник. 2018. № 1. С. 148–152. https://doi.org/10.25712/ASTU.2072-8921.2018.01.028
- Bali G., Meng X., Deneff J.I., Sun Q., Ragauskas A.J. // ChemSusChem. 2015. V. 8. P. 275–279. https://doi.org/10.1002/cssc.201402752
- Prajapati B.P., Jana U.K., Suryawanshi R.K., Kango N. // Renewable Energy. 2020. V. 152. P. 653–663. https://doi.org/10.1016/j.renene.2020.01.063
- Liu I., Li Z. // RSC Advances. 2017. V. 7. P. 47456–47463. https://doi.org/10.1039/C7RA08101D
- Qing Q., Zhou L.L., Guo Q., Huang M.Z., He Y.C., Wang L.Q., Zhang Y. // Bioresour. Technol. 2016. V. 218. P. 209–216. https://doi.org/10.1016/j.biortech.2016.06.063
- Rabemanolontsoa H., Saka S. // Bioresour. Technol. 2016. V. 199. P. 83–91. https://doi.org/10.1016/j.biortech.2015.08.029
- Mishra A., Ghosh S. // Fuel. 2019. V. 236. P. 544–553. https://doi.org/10.1016/j.fuel.2018.09.024
- Woiciechowski A. L., Dalmas Neto C.J., Vandenberghe L.P.S., Carvalho Neto D.P., Sydney A.C.N., Letti L.A.J. et al. // Bioresour. Technol. 2020. V. 304. 122848. https://doi.org/10.1016/j.biortech.2020.122848
- Yu Z., Du Y., Shang X., Zheng Y., Zhou J. // Industrial Crops and Products. 2018. V. 124. P. 555–562. https://doi.org/10.1016/j.indcrop.2018.08.029
- Nitsos C., Matsakas L., Triantafyllidis K., Rova U., Christakopoulos P. // Biofuels. 2018. V. 9. P. 545–558. https://doi.org/10.1080/17597269.2017.1378988
- Liu Q., Li W., Ma Q., An S., Li M., Jameel H., Chang H.M. // Bioresour. Technol. 2016. V. 211. P. 435–442. https://doi.org/10.1016/j.biortech.2016.03.131
- Ostovareh S., Karimi K., Zamani A. // Industrial Crops and Products. 2015. V. 66. P. 170–177. https://doi.org/10.1016/j.indcrop.2014.12.023
- He Y.C., Liu F., Di J.H., Ding Y., Tao Z.C., Zhu Z.Z. et al.. // Industrial Crops and Products. 2016. V. 81. P. 129–138. https://doi.org/10.1016/j.indcrop.2015.11.079
- Arato C., Kendall P., Gjennstad G. // Appl. Biochem. and Biotechnol. 2005. V. 123. P. 871–882. https://doi.org/10.1007/978-1-59259-991-2_74
- Satlewal A., Agrawal R., Bhagia S., Sangoro J., Ragauskas A.J. // Biotechnol. Adv. 2018. V. 3. P. 2032–2050. https://doi.org/10.1016/j.biotechadv.2018.08.009
- Zhao H., Baker G.A. // J. Chemical Technol. and Biotechnol. 2012. V. 88. P. 3–12. https://doi.org/10.1002/jctb.3935
- New E.K., Wu T.Y., Lee C.B., Poon Z.Y., Loow Y.-L., Foo L.Y.W. et al. // Process Safety and Environmental Protection. 2019. V. 123. P. 190–198. https://doi.org/10.1016/j.psep.2018.11.015
- Chen Z., Jacoby W.A., Wan C. // Bioresour. Technol. 2019. V. 279. P. 281–286. https://doi.org/10.1016/j.biortech.2019.01.126
- Chong G., Di J., Ma C., Wang D., Wang C., Wang L., Zhang P., Zhu J., He Y. // Bioresour. Technol. 2018. V. 261. P. 196–205. https://doi.org/10.1016/j.biortech.2018.04.015
- Синицын А.П., Синицына О.А. // Успехи биологической химии. 2021. Т. 61. С. 347–414.
- Morozova V.V., Gusakov A.V., Andrianov R.M., Pravilnikov A.G., Osipov D.O., Sinitsyn A.P. // Biotechnol. J. 2010. V. 5. № 8. P. 871–880. https://doi.org/10.1002/biot.201000050
- Dotsenko G.S., Gusakov A.V., Rozhkova A.M., Korotkova O.G., Sinitsyn A.P. // Process Biochem. 2015. V. 50. P. 1258–1263. https://doi.org/10.1016/j.procbio.2015.05.008
- Синицын А.П., Черноглазов В.М., Гусаков А.В. Итоги науки и техники. М.: ВИНИТИ, Биотехнология. 1990. № 25. С. 148.
- Korotkova O.G., Semenova M.V., Morozova V.V., Zorov I.N., Sokolova L.M., Bubnova T.M. et al. // Biochemistry (Moscow). 2009. V. 74. № 5. P. 569–577. https://doi.org/10.1134/S0006297909050137
- Синицына О.А., Бухтояров Ф.Е., Гусаков А.В., Окунев О.Н., Беккаревич А.О. и др. // Биохимия. 2003. Т. 68. № 11. С. 1494–1505.
- Осипов Д.О., Булахов А.Г., Короткова О.Г., Рожкова А.М., Дуплякин Е.О. и др. // Катализ в промышленности. 2016. Т. 16. С. 75–82. https://doi.org/10.18412/1816-0387-2016-5-75-82
- Procentese A., Johnson E., Orr V., Garruto Campanile A., Wood J.A., Marzocchella A. et al. // Biores. Technol. 2015. V. 192. P. 31–36. https://doi.org/10.1016/j.biortech.2015.05.053
- Zhang C.-W., Xia S.-Q., Ma P.-S. // Biores. Technol. 2016. V. 219. P. 1–5. https://doi.org/10.1016/j.biortech.2016.07.026
- Wahlstrom R., Hiltunen J., Pitaluga De Souza Nascente Sirkka M., Vuoti S., Kruus K. // RSC Adv. 2016. V. 6. № 72. P. 68100–68110. https://doi.org/10.1039/C6RA11719H
- Семенова М.В., Васильева И.С., Ярополов А.И., Синицын А.П. // Прикл. биохимия микробиология. 2023. Т. 59. №3. С. 253–259. https://doi.org/10.31857/S0555109923030169
- Синицын А.П., Осипов Д.О., Цурикова Н.В., Великорецкая И.А., Шашков И.А., Зверев С.В. // Биотехнология. 2016. Т. 1. С. 27–36. https://doi.org/10.21519/0234-2758-2016-1-27-36
- Доценко Г.С., Осипов Д.О., Зоров И.Н., Синицын А.П. // Катализ в промышленности. 2015. Т. 15. С. 67–73. https://doi.org/10.18412/1816-0387-2015-5-67-73
Supplementary files
