Platinum nanoparticles in aqueous solutions of chitosan-vinylpyrrolidone copolymer: synthesis and biological activity
- Authors: Zuev D.N.1, Cherkasova E.I.1, Apryatina K.V.1, Zaitsev S.D.1, Smirnova L.A.1
- 
							Affiliations: 
							- National Research Nizhny Novgorod State University named after N.I. Lobachevsky
 
- Issue: Vol 60, No 4 (2024)
- Pages: 356-365
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674540
- DOI: https://doi.org/10.31857/S0555109924040049
- EDN: https://elibrary.ru/SBIMRS
- ID: 674540
Cite item
Abstract
Grafted copolymers of chitosan-vinylpyrrolidone, water-soluble at a pH of 6.8–7.5, were obtained. A technique has been developed for obtaining an aggregatively stable system of platinum nanoparticles in copolymer solutions with an average size of ~ 4 nm. The thermophysical and structural characteristics of the powdered composition of a platinum nanoparticle-copolymer are investigated. An in vitro comparison of the antitumor activity of solutions of the developed composition and cisplatin at the same platinum concentration was performed. It was found that with respect to the culture of HeLa Kyoto and A431 cancer cells, the composition is five and two times less effective than cisplatin, respectively. Along with this, the biocompatibility of the composition is 17 times higher than that of cisplatin, which allows its use at elevated concentrations and the development of an antitumor agent with platinum nanoparticles commensurate in effectiveness with cisplatin.
Full Text
 
												
	                        About the authors
D. N. Zuev
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
							Author for correspondence.
							Email: z_u_e_v2020@mail.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod, 603022						
E. I. Cherkasova
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
														Email: z_u_e_v2020@mail.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod, 603022						
K. V. Apryatina
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
														Email: z_u_e_v2020@mail.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod, 603022						
S. D. Zaitsev
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
														Email: z_u_e_v2020@mail.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod, 603022						
L. A. Smirnova
National Research Nizhny Novgorod State University named after N.I. Lobachevsky
														Email: z_u_e_v2020@mail.ru
				                					                																			                												                	Russian Federation, 							Nizhny Novgorod, 603022						
References
- Yamada M., Foote M., Prow T.W. // WIREs Nanomed. Nanobiotechnol. 2015. V. 7. P. 428–445. https://doi.org/10.1002/wnan.1322
- Rai M., Ingle A.P., Birla S., Yadav A., Santos C.A.D. // Crit. Rev. Microbiol. 2016. V. 42. P. 696–719. https://doi.org/10.3109/1040841X.2015.1018131
- Arvizo R.R., Bhattacharyya S., Kudgus R.A., Giri K., Bhattacharya R., Mukherjee P. // Chem. Soc. Rev. 2012. V. 41. P. 2943–2970. https://doi.org/10.1039/c2cs15355f
- Huang H., Yuan Q., Yang X. // Colloids Surf. B. 2004. V. 39. P. 31–37. https://doi.org/10.1016/j.colsurfb.2004.08.014
- Du Y.K., Yang P., Mou Z.G., Hua N.P., Jiang L. // J. Appl. Polym. Sci. 2006. V. 99. P. 23–26. https://doi.org/10.1002/app.21886
- Rai M., Ingle A.P., Gupta I., Brandelli A. // Int. J. Pharm. 2015. V. 496. P. 159–172. https://doi.org/10.1016/j.ijpharm.2015.10.059
- Yerpude S.T. et al. // Environmental Research. 2023. V. 231 (2). 116148. https://doi.org/10.1016/j.envres.2023.116148
- Khan M.A.R., Al Mamun M.S., Ara M.H. // Microchemical Journal. 2021. V. 171. С. 106840. https://doi.org/10.1016/j.microc.2021.106840
- Gutiérrez de la Rosa S.Y. et al. // International Journal of Molecular Sciences. 2022. V. 23. № . 16. С. 9404. https://doi.org/10.3390/ijms23169404
- Malode U. et al. // Bulletin of the National Research Centre. 2023. V. 47. № . 1. C. 130. https://doi.org/10.1186/s42269-023-01104-y
- Kumar A., Das N., Rayavarapu R.G. // Journal of Nanotheranostics. 2023. V. 4. № . 3. С. 384–407. https://doi.org/10.3390/jnt4030017
- Jan H. et al. // Journal of Saudi Chemical Society. 2021. Т. 25. № . 8. С. 101297. https://doi.org/10.1016/j.jscs.2021.101297
- Jeyaraj M., Gurunathan S., Qasim M., Kang M., Kim J. // Nanomaterials. 2019. V. 9. № 12. P. 1719. https://doi.org/10.3390/nano9121719
- Wang W., Liang G., Zhang W. // Chem Mater. 2018. V. 30. № 10. P. 3486–3498. https://doi.org/10.1038/s41467-019-09566-3
- Kutwin M. // Arch. Med. Sci. 2017. V. 201. № 13. P. 1322–1334. https://doi.org/10.5114/aoms.2016.58925
- Аранцева Д.А., Водовозова Е.Л. // Биоорганическая химия. 2018. Т. 44. № 6. С. 620–6З2. https://doi.org/10.19163/2307-9266-2021-9-4-252-265
- Моисеенко В.М. // Практическая онкология. 2006. Т. 7. № 3. C. 170–178.
- Вартанян А.А., Огородникова М.В. // Российский биотерапевтический журнал. 2004. Т. 1. № 3. С. 14–18.
- Ахтямов А.Э. // Международный студенческий научный вестник. 2018. № 4 (часть З). С. 4З6–4З9.
- Johnstone T.C., Suntharalingam K., Lippard S.J. // Prodrugs. Chem. Rev. 2016. V. 116. № 5. P. 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597
- Panikkanvalappil S.R., Mahmoud M.A., Mackey M.A., El-Sayed M.A. // ACS Nano. 2013, V. 7. № 9. P. 7524–7533. https://doi.org/10.1021/nn403722x
- Zhang C., Xu C., Gao X., Yao Q. // Theranostics. 2022. V. 12. № 25. P. 2115–2132. https://doi.org/10.7150/thno.69424
- Wennemers H., Shoshan M.S., Vonderach T. // Angewandte Chemie International Edition. 2018. V. 58. № 15. P. 4901–4905. https://doi.org/10.1002/anie.201813149
- Варламов В.П., Ильина А.В., Шагдарова Б.Ц., Луньков А.П., Мысякина И.С. // Успехи биологической химии. Т. 60. 2020. С. 317–368.
- Свирщевская Е.В., Гриневич Р.С., Решетов П.Д., Зубов В.П., Зубарева А.А., Ильина А.В., Варламов В.П. // Бионанотехнологии и нанобиоматериаловедение. 2012. Т. 1. № 19. С. 13–19.
- Sartaj A., Qamar Z., Qizilbash F.F., Annu K., Md S., Alhakamy N., Baboota S., Ali J. // Polymers (Basel). 2021. V. 13. № 24. P. 4400. https://doi.org/10.3390/polym13244400
- Панфилова Е.В., Буров А.М., Хлебцов Б.Н. // Коллоидный журнал. 2020. Т. 82. № 1. С. 37–46. https://doi.org/10.31857/S0023291220010097
- Nie Z., Petukhova A., Kumacheva E. // Nat. Nanotechnol. 2010. V. 5. № 1. P. 15–25. https://doi.org/10.138/nnano.2009.453
- Куликов С.Н., Хайруллин Р.З. // Вестник Казанского технологического университета. 2015. Т. 18. № 18. С. 265–267.
- Литманович О.Е. // Высокомолекулярные соединения, Серия C. 2008. Т. 50. № 7. С. 1370–1396.
- Pourjavadi A., Mahdavinia G.R., Zohuriaan-Mehr M.J., Omidian H. // Journal of Applied Polymer Science. 2003. V. 88. № 8. P. 2048–2054. https://doi.org/10.1002/app.11820
- Solomko N.Yu., Dron I.A., Budishevskaya O.G., Voronov S.A. // Procedia Chemistry. 2009. V. 1. № . 2. P. 1567–1575. https://doi.org/10.1016/j.proche.2009.11.005
- Hsu S.-C., Don T.-M., Chiu W.-Y. // J. Appl. Polym. Sci. 2002. V. 86. № 12. P. 3047–3056. https://doi.org/10.1002/app.11333
- Аржаков М.C. Термомеханика полимеров. Montreal: Accent Graphics Communications, 2019. 150 с.
Supplementary files
 
				
			 
					 
						 
						 
						 
						 
									

 
  
  
  Email this article
			Email this article 

 Open Access
		                                Open Access Access granted
						Access granted










