Platinum nanoparticles in aqueous solutions of chitosan-vinylpyrrolidone copolymer: synthesis and biological activity

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Grafted copolymers of chitosan-vinylpyrrolidone, water-soluble at a pH of 6.8–7.5, were obtained. A technique has been developed for obtaining an aggregatively stable system of platinum nanoparticles in copolymer solutions with an average size of ~ 4 nm. The thermophysical and structural characteristics of the powdered composition of a platinum nanoparticle-copolymer are investigated. An in vitro comparison of the antitumor activity of solutions of the developed composition and cisplatin at the same platinum concentration was performed. It was found that with respect to the culture of HeLa Kyoto and A431 cancer cells, the composition is five and two times less effective than cisplatin, respectively. Along with this, the biocompatibility of the composition is 17 times higher than that of cisplatin, which allows its use at elevated concentrations and the development of an antitumor agent with platinum nanoparticles commensurate in effectiveness with cisplatin.

Full Text

Restricted Access

About the authors

D. N. Zuev

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Author for correspondence.
Email: z_u_e_v2020@mail.ru
Russian Federation, Nizhny Novgorod, 603022

E. I. Cherkasova

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: z_u_e_v2020@mail.ru
Russian Federation, Nizhny Novgorod, 603022

K. V. Apryatina

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: z_u_e_v2020@mail.ru
Russian Federation, Nizhny Novgorod, 603022

S. D. Zaitsev

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: z_u_e_v2020@mail.ru
Russian Federation, Nizhny Novgorod, 603022

L. A. Smirnova

National Research Nizhny Novgorod State University named after N.I. Lobachevsky

Email: z_u_e_v2020@mail.ru
Russian Federation, Nizhny Novgorod, 603022

References

  1. Yamada M., Foote M., Prow T.W. // WIREs Nanomed. Nanobiotechnol. 2015. V. 7. P. 428–445. https://doi.org/10.1002/wnan.1322
  2. Rai M., Ingle A.P., Birla S., Yadav A., Santos C.A.D. // Crit. Rev. Microbiol. 2016. V. 42. P. 696–719. https://doi.org/10.3109/1040841X.2015.1018131
  3. Arvizo R.R., Bhattacharyya S., Kudgus R.A., Giri K., Bhattacharya R., Mukherjee P. // Chem. Soc. Rev. 2012. V. 41. P. 2943–2970. https://doi.org/10.1039/c2cs15355f
  4. Huang H., Yuan Q., Yang X. // Colloids Surf. B. 2004. V. 39. P. 31–37. https://doi.org/10.1016/j.colsurfb.2004.08.014
  5. Du Y.K., Yang P., Mou Z.G., Hua N.P., Jiang L. // J. Appl. Polym. Sci. 2006. V. 99. P. 23–26. https://doi.org/10.1002/app.21886
  6. Rai M., Ingle A.P., Gupta I., Brandelli A. // Int. J. Pharm. 2015. V. 496. P. 159–172. https://doi.org/10.1016/j.ijpharm.2015.10.059
  7. Yerpude S.T. et al. // Environmental Research. 2023. V. 231 (2). 116148. https://doi.org/10.1016/j.envres.2023.116148
  8. Khan M.A.R., Al Mamun M.S., Ara M.H. // Microchemical Journal. 2021. V. 171. С. 106840. https://doi.org/10.1016/j.microc.2021.106840
  9. Gutiérrez de la Rosa S.Y. et al. // International Journal of Molecular Sciences. 2022. V. 23. № . 16. С. 9404. https://doi.org/10.3390/ijms23169404
  10. Malode U. et al. // Bulletin of the National Research Centre. 2023. V. 47. № . 1. C. 130. https://doi.org/10.1186/s42269-023-01104-y
  11. Kumar A., Das N., Rayavarapu R.G. // Journal of Nanotheranostics. 2023. V. 4. № . 3. С. 384–407. https://doi.org/10.3390/jnt4030017
  12. Jan H. et al. // Journal of Saudi Chemical Society. 2021. Т. 25. № . 8. С. 101297. https://doi.org/10.1016/j.jscs.2021.101297
  13. Jeyaraj M., Gurunathan S., Qasim M., Kang M., Kim J. // Nanomaterials. 2019. V. 9. № 12. P. 1719. https://doi.org/10.3390/nano9121719
  14. Wang W., Liang G., Zhang W. // Chem Mater. 2018. V. 30. № 10. P. 3486–3498. https://doi.org/10.1038/s41467-019-09566-3
  15. Kutwin M. // Arch. Med. Sci. 2017. V. 201. № 13. P. 1322–1334. https://doi.org/10.5114/aoms.2016.58925
  16. Аранцева Д.А., Водовозова Е.Л. // Биоорганическая химия. 2018. Т. 44. № 6. С. 620–6З2. https://doi.org/10.19163/2307-9266-2021-9-4-252-265
  17. Моисеенко В.М. // Практическая онкология. 2006. Т. 7. № 3. C. 170–178.
  18. Вартанян А.А., Огородникова М.В. // Российский биотерапевтический журнал. 2004. Т. 1. № 3. С. 14–18.
  19. Ахтямов А.Э. // Международный студенческий научный вестник. 2018. № 4 (часть З). С. 4З6–4З9.
  20. Johnstone T.C., Suntharalingam K., Lippard S.J. // Prodrugs. Chem. Rev. 2016. V. 116. № 5. P. 3436–3486. https://doi.org/10.1021/acs.chemrev.5b00597
  21. Panikkanvalappil S.R., Mahmoud M.A., Mackey M.A., El-Sayed M.A. // ACS Nano. 2013, V. 7. № 9. P. 7524–7533. https://doi.org/10.1021/nn403722x
  22. Zhang C., Xu C., Gao X., Yao Q. // Theranostics. 2022. V. 12. № 25. P. 2115–2132. https://doi.org/10.7150/thno.69424
  23. Wennemers H., Shoshan M.S., Vonderach T. // Angewandte Chemie International Edition. 2018. V. 58. № 15. P. 4901–4905. https://doi.org/10.1002/anie.201813149
  24. Варламов В.П., Ильина А.В., Шагдарова Б.Ц., Луньков А.П., Мысякина И.С. // Успехи биологической химии. Т. 60. 2020. С. 317–368.
  25. Свирщевская Е.В., Гриневич Р.С., Решетов П.Д., Зубов В.П., Зубарева А.А., Ильина А.В., Варламов В.П. // Бионанотехнологии и нанобиоматериаловедение. 2012. Т. 1. № 19. С. 13–19.
  26. Sartaj A., Qamar Z., Qizilbash F.F., Annu K., Md S., Alhakamy N., Baboota S., Ali J. // Polymers (Basel). 2021. V. 13. № 24. P. 4400. https://doi.org/10.3390/polym13244400
  27. Панфилова Е.В., Буров А.М., Хлебцов Б.Н. // Коллоидный журнал. 2020. Т. 82. № 1. С. 37–46. https://doi.org/10.31857/S0023291220010097
  28. Nie Z., Petukhova A., Kumacheva E. // Nat. Nanotechnol. 2010. V. 5. № 1. P. 15–25. https://doi.org/10.138/nnano.2009.453
  29. Куликов С.Н., Хайруллин Р.З. // Вестник Казанского технологического университета. 2015. Т. 18. № 18. С. 265–267.
  30. Литманович О.Е. // Высокомолекулярные соединения, Серия C. 2008. Т. 50. № 7. С. 1370–1396.
  31. Pourjavadi A., Mahdavinia G.R., Zohuriaan-Mehr M.J., Omidian H. // Journal of Applied Polymer Science. 2003. V. 88. № 8. P. 2048–2054. https://doi.org/10.1002/app.11820
  32. Solomko N.Yu., Dron I.A., Budishevskaya O.G., Voronov S.A. // Procedia Chemistry. 2009. V. 1. № . 2. P. 1567–1575. https://doi.org/10.1016/j.proche.2009.11.005
  33. Hsu S.-C., Don T.-M., Chiu W.-Y. // J. Appl. Polym. Sci. 2002. V. 86. № 12. P. 3047–3056. https://doi.org/10.1002/app.11333
  34. Аржаков М.C. Термомеханика полимеров. Montreal: Accent Graphics Communications, 2019. 150 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Conversion of VP during graft polymerization: in an aqueous solution at 70C, initiator – cerium ammonium nitrate (1); in an aqueous solution at 70C, initiator – ammonium persulfate (2) and in a DMSO solution at 70C, initiator – cerium ammonium nitrate (3)

Download (63KB)
3. Fig. 2. Acid hydrolysis reactions of VP

Download (78KB)
4. Fig. 3. Chromatograms of samples after the synthesis of polymer separation (1) and VP (2)

Download (50KB)
5. Fig. 4. Reduction in the relative viscosity of a chitosan solution under the action of ammonium persulfate at 70C and an initiator concentration of 5 × 10–3 mol/l

Download (55KB)
6. Fig. 5. Curves obtained by the DSC method: 1 – chitosan; 2 – PVP; 3 – chitosan-graft-PVP

Download (74KB)
7. Rice. 6. XRF spectrum of chitosan (1) and chitosan-priv-PVP (2)

Download (71KB)
8. Fig. 7. UV absorption spectra of platinum NPs in aqueous-acidic solutions of chitosan (1) and in aqueous solutions of the copolymer (2)

Download (60KB)
9. Fig. 8. X-ray diffraction spectrum of platinum NPs in copolymer (1) and in chitosan (2)

Download (68KB)
10. Fig. 9. TEM micrographs of a composite with platinum NPs

Download (236KB)
11. Fig. 10. SEM images of the composite surface. Light points (а, б, в) refer to platinum NPs, the diagram (г) demonstrates the distribution of elements at the image point (в), which refers to NP agglomerates.

Download (219KB)
12. Fig. 11. Viability (%) of HeLa Kyoto cancer cells (а, б), A431 cells (в, г) and hTERT BJ-5TA fibroblast cells (д, е) when exposed to cisplatin (а, в, д), a composite of Pt NPs with a copolymer (б, г, е)

Download (352KB)

Copyright (c) 2024 Russian Academy of Sciences