Enzymatic conversion of wood materials from the pulp and paper industry
- Authors: Aksenov A.S.1, Sinelnikov I.G.2, Shevchenko A.R.1, Mayorova K.A.1, Chukhchin D.G.1, Osipov D.О.2, Semenova M.V.2, Sinitsyna O.A.3, Rozhkova A.M.2, Novozhilov E.V.1, Sinitsyn A.P.2,3
-
Affiliations:
- Northern (Arctic) federal university named after M. V. Lomonosov
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
- Chemical Department, Lomonosov Moscow State University
- Issue: Vol 60, No 3 (2024)
- Pages: 274-283
- Section: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674554
- DOI: https://doi.org/10.31857/S0555109924030068
- EDN: https://elibrary.ru/EWVSDY
- ID: 674554
Cite item
Abstract
The reactivity during enzymatic hydrolysis of 8 industrially produced samples of pulps and semi-chemical pulps by enzyme preparations of glycosyl hydrolases B151 and F10 produced by a strain of ascomycete fungus Penicillium verruculosum has been determined. It is shown for the first time that among fibrous pulps available on the market of pulp and paper industry in Russia, the highest level of yield of glucose from the initial wood during biocatalysis using cellulases and hemicellulases is characteristic of semi-chemical pulps obtained after cooking of hardwood with green liquor. A high degree of enzymatic conversion of softwood bleached kraft pulp has been established, which in combination with the possibility of obtaining modified polysaccharide materials from non-hydrolysable residue makes this cellulosic substrate the most promising for the development of biological processes at pulp and paper industries. It is shown that drying of pulp negatively affects the efficiency of cellulose hydrolysis, while mechanical milling improves the performance of the enzymatic saccharification process.
Full Text

About the authors
A. S. Aksenov
Northern (Arctic) federal university named after M. V. Lomonosov
Author for correspondence.
Email: a.s.aksenov@narfu.ru
Russian Federation, Arkhangelsk
I. G. Sinelnikov
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow
A. R. Shevchenko
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
Russian Federation, Arkhangelsk
K. A. Mayorova
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
Russian Federation, Arkhangelsk
D. G. Chukhchin
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
Russian Federation, Arkhangelsk
D. О. Osipov
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow
M. V. Semenova
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow
O. A. Sinitsyna
Chemical Department, Lomonosov Moscow State University
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow
A. M. Rozhkova
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow
E. V. Novozhilov
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
Russian Federation, Arkhangelsk
A. P. Sinitsyn
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences; Chemical Department, Lomonosov Moscow State University
Email: a.s.aksenov@narfu.ru
Russian Federation, Moscow; Moscow
References
- Braghiroli F.L., Passarini L. // Current Forestry Reports. 2020. V. 6. P. 172–183. https://doi.org/10.1007/s40725-020-00112-9
- Gonçalves M.C.P., Romanelli J.P., Cansian A.B.M., Pucci E.F.Q., Guimaraes J.R., Tardioli P.W., Saville B.A. // Ind. Crop. Prod. 2022. V. 186. 115213. https://doi.org/10.1016/j.indcrop.2022.115213
- Семёнова М.В., Гусаков А.В., Телицин В.Д., Синицын А. П. // Прикл. биохимия и микробиология. 2021. Т. 57. № 5. С. 477–484. https://doi.org/10.31857/S0555109921050147
- Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Прикл. биохимия и микробиология. 2020. Т. 56. № 6. С. 551–560. https://doi.org/10.31857/S0555109920060161
- Zhou B., Wang Y., Jiang Z., Salam A., Li K. // J. Wood Chem. Technol. 2021. V. 41. № 4. P. 150–159. https://doi.org/10.1080/02773813.2021.1938130
- Kumar B., Verma P. // Fuel. 2021. V. 288. 119622. https://doi.org/10.1016/j.fuel.2020.119622
- Rabinovich M. L. // Cell. Chem. Tech. 2010. V. 44. № 4. P. 173–186.
- Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J. // Biores. Technol. 2010. V. 101. № 13. P. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
- Zhu J.Y., Pan X.J. // Biores. Tech. 2010. V. 101. № 13. P. 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007
- Hendriks A.T.W.M., Zeeman G. // Biores. Technol. 2009. V. 100. № 1. P. 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
- Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M. // Molecules. 2018. V. 23. № 11. 2937. https://doi.org/10.3390/molecules23112937
- Asada C., Sasaki C., Uto Y., Sakafuji J., Nakamura Y. // Biochem. Eng. J. 2012. V. 60. P. 25–29. https://doi.org/10.1016/j.bej.2011.09.013
- Pielhop T., Amgarten J., von Rohr P.R., Studer M.H. // Biotech. Biofuels. 2016. V. 9. № 1. P. 1–13. https://doi.org/10.1186/s13068-016-0567-1
- Doménech P., Manzanares P., Álvarez C., Ballesteros M., Duque A. // Holzforschung. 2020. V. 75. № 3. P. 250–259. https://doi.org/10.1515/hf-2020-0068
- Vaidya A.A., Murton K.D., Smith D.A., Dedual G. // Biomass conv. Bioref. 2022. V. 12. № 11. P. 5427–5442. https://doi.org/10.1007/s13399-022-02373-9
- Xu X., Wang K., Zhou Y., Lai C., Zhang D., Xia C., Pugazhendhi A. // Fuel. 2023. V. 338. Р. 127361. https://dx.doi.org/10.1016/j.fuel.2022.127361
- Zhao X., Zhan Y., Han L., Sun X., Zhang T., Zhao Z. // Processes. 2023. V. 11. № 4. P. 1293. https://doi.org/10.3390/pr11041293
- Yin X., Wei L., Pan X., Liu C., Jiang J., Wan. K. // Front. Plant Sci. 2021. V. 12. 670061. https://doi.org/10.3389/fpls.2021.670061
- Moniruzzaman M., Goto, M. // Appl. Ionic liq. Biotech. 2019. P. 61–77. https://doi.org/10.1007/10_2018_64
- Wu W., Li P., Huang L., Wei Y., Li J., Zhang L., Jin Y. // Biomass. 2023. V. 3. № 1. P. 96–107. https://doi.org/10.3390/biomass3010007
- Przybysz Buzała K., Kalinowska H., Małachowska E., Boruszewski P., Krajewski K., Przybysz P. // Energies. 2019. V. 12. № 15. 2952. https://doi.org/10.3390/en12152952
- Cai C., Zhang C., Li N., Liu H., Xie J., Lou H., Pan X., Zhu J. Y., Wang F. // Renew. Sust. En. Rev. 2023. V. 183. 113445. https://doi.org/10.1016/j.rser.2023.113445
- Van Wyk J.P.H. // Biomass Bioen. 1999. V. 16. № 3. P. 239–242.
- Jin Y., Jameel H., Chang H. M., Phillips R. // J. Wood Chem. Tech. 2010. V. 30. № 1. P. 86–104. https://dx.doi.org/10.1080/02773810903578360
- Buzała K., Przybysz P., Rosicka-Kaczmarek J., Kalinowska H. // Cellulose. 2015. V. 22. P. 663–674. https://doi.org/10.1007/s10570-014-0522-x
- Доценко Г.С., Чекушина А.В., Кондратьева Е.Г., Правильников А.Г., Андрианов Р.М., Осипов Д.О. и др. // Лес. Вест. 2012. Т. 8. № 91. С. 129–135.
- Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 4. С. 312–333. https://doi.org/10.55959/MSU0579-9384-2-2023-64-4312-333
- Новожилов Е.В., Аксенов А.С., Демидов М.Л., Чухчин Д.Г., Доценко Г.С., Осипов, Д.О., Синицын А.П. // Кат. Пром. 2014. Т. 4. С. 74–80. https://dx.doi.org/10.1134/S2070050414040138
- Новожилов Е.В., Синельников И.Г., Аксенов А.С., Чухчин Д.Г., Тышкунова И.В., Рожкова А.М. и др.// Кат. Пром. 2015. Т. 5. С. 78–83. https://doi.org/10.18412/1816-0387-2015-5-78-83
- Aksenov A.S., Tyshkunova I.V., Poshina D.N., Guryanova A.A., Chukhchin D.G., Sinelnikov I.G. et. al. // Catalysts. 2020. V. 10. 536. https://doi.org/10.3390/catal10050536
- Shevchenko A.R., Mayorova K.A., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. еt al // Fermentation. 2023. V. 9. 936. https://doi.org/10.3390/fermentation9110936
- Saini J.K., Patel A.K., Adsul M., Singhania R.R. // Renewable Energy. 2016. V. 98. P. 29–42. https://dx.doi.org/10.1016/j.renene.2016.03.089
- Cai C., Li J., Hirth K., Huber G. W., Lou H., Zhu J. Y. // ChemSusChem. 2020. V. 13. P. 4649–4659. https://doi.org/10.1002/cssc.202001120
- Brondi M.G., Elias A. M., Furlan F.F., Giordano R.C., Farinas C.S. // Sci. Rep. 2020. V. 10. 7367. https://doi.org/10.1038/s41598-020-64316-6
- Aldaeus F., Larsson K., Srndovic J. S., Kubat M., Karlström K., Peciulyte A., Olsson L., Larsson, P. T. // Cellulose. 2015. V. 22. P. 3991–4002. https://doi.org/10.1007/s10570-015-0766-0
- Huang C., Li R., Tang W., Zheng Y., Meng, X. // Fermentation. 2022. V. 8, 558. https://doi.org/10.3390/fermentation8100558
- Wang Z.J., Lan T.Q., Zhu J.Y. // Biotech. Biofuels. 2013. V. 6. 9. https://doi.org/10.1186/1754-6834-6-9
- Willför S., Pranovich A., Tamminen T., Puls J., Laine C., Suurnäkki A., Saake B., Uotila K., Simolin H., Hemming J., Holmbom B. // Ind. Crops Prod. 2009. V. 29. P. 571–580. https://doi.org/10.1016/j.indcrop.2008.11.003
- Ghose T.K. // Pure Appl. Chem. 1987. V. 59, P. 257–268. https://doi.org/10.1351/pac198759020257
- Nelson, N. // J. Biol. Chem. 1944. V. 153. № 2. P. 375–380. https://doi.org/10.1016/S0021-9258(18)71980-7
- Lowry O.H., Roseborough N.J., Farr A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275. https://dx.doi.org/10.1016/S0021–9258(19)52451–6
- Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. // Biores. Technol. 2005. V. 96. № 6. P. 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
- Sun S., Sun S., Cao X., Sun R. // Biores. Technol. 2016. V. 199. P. 49–58. https://doi.org/10.1016/j.biortech.2015.08.061
- Холькин Ю.И. Технология гидролизных производств. М.: Лесная промышленность, 1989. 496 с.
- Ek M.; Gellerstedt G., Henriksson G. Pulping Chemistry and Technology. / Eds. M. Ek, G. Gellerstedt, G.r Henriksson. Berlin: Walter de Gruyter GmbH, 2009. V. 2. 471 p.
- Мингазова Л.А., Канарский А. В., Крякунова Е.В., Канарская З.А. // Лесн. Журн. 2020. Т. 2. № 374. С. 146–158. https://doi.org/10.37482/0536-1036-2020-2-146-158
- Новожилов Е.В. // Лесн. Журн. 1999. Т. 2. № 3. С. 180–188.
- Ko C.H., Chen F.J., Lee J.J., Tzou D.L.M. // Cellulose. 2011. V. 18. P. 1043–1054. https://doi.org/10.1007/s10570-011-9534-y
- Laivins, G.V., Scallan, A.M. // Prod. Paper. 1993. V. 2. P. 1235–1260. https://doi.org/10.15376/frc.1993.2.1235
- Rebuzzi, F., Evtuguin, D.V. // Macromol. Symposia. 2005. V. 232. № 1. P. 121–128. https://doi.org/10.1002/masy.200551414
- Kamaya Y. // J. Ferm. Bioeng. 1996. V. 82. P. 549–553. https://doi.org/10.1016/S0922-338X(97)81250-0
- Garcia-Ubasart J., Torres A.L., Vila C., Pastor F.I.J., Vidal T. // Ind. Crop. Prod. 2013. V. 44. P. 71–76. https://doi.org/10.1016/j.indcrop.2012.10.019
- Shevchenko A.R., Tyshkunova I.V., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. et al. // Catalysts. 2023. V. 13. № 1. 103. https://doi.org/10.3390/catal13010103
- Mayorova K., Aksenov A., Shevchenko A. // AIP Conf. Proc. 2023. V. 2931, P. 030005-1-030005-8 https://doi.org/10.1063/5.0178421
Supplementary files
