Enzymatic conversion of wood materials from the pulp and paper industry
- 作者: Aksenov A.S.1, Sinelnikov I.G.2, Shevchenko A.R.1, Mayorova K.A.1, Chukhchin D.G.1, Osipov D.О.2, Semenova M.V.2, Sinitsyna O.A.3, Rozhkova A.M.2, Novozhilov E.V.1, Sinitsyn A.P.2,3
-
隶属关系:
- Northern (Arctic) federal university named after M. V. Lomonosov
- Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
- Chemical Department, Lomonosov Moscow State University
- 期: 卷 60, 编号 3 (2024)
- 页面: 274-283
- 栏目: Articles
- URL: https://cardiosomatics.ru/0555-1099/article/view/674554
- DOI: https://doi.org/10.31857/S0555109924030068
- EDN: https://elibrary.ru/EWVSDY
- ID: 674554
如何引用文章
详细
The reactivity during enzymatic hydrolysis of 8 industrially produced samples of pulps and semi-chemical pulps by enzyme preparations of glycosyl hydrolases B151 and F10 produced by a strain of ascomycete fungus Penicillium verruculosum has been determined. It is shown for the first time that among fibrous pulps available on the market of pulp and paper industry in Russia, the highest level of yield of glucose from the initial wood during biocatalysis using cellulases and hemicellulases is characteristic of semi-chemical pulps obtained after cooking of hardwood with green liquor. A high degree of enzymatic conversion of softwood bleached kraft pulp has been established, which in combination with the possibility of obtaining modified polysaccharide materials from non-hydrolysable residue makes this cellulosic substrate the most promising for the development of biological processes at pulp and paper industries. It is shown that drying of pulp negatively affects the efficiency of cellulose hydrolysis, while mechanical milling improves the performance of the enzymatic saccharification process.
全文:

作者简介
A. Aksenov
Northern (Arctic) federal university named after M. V. Lomonosov
编辑信件的主要联系方式.
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Arkhangelsk
I. Sinelnikov
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow
A. Shevchenko
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Arkhangelsk
K. Mayorova
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Arkhangelsk
D. Chukhchin
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Arkhangelsk
D. Osipov
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow
M. Semenova
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow
O. Sinitsyna
Chemical Department, Lomonosov Moscow State University
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow
A. Rozhkova
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow
E. Novozhilov
Northern (Arctic) federal university named after M. V. Lomonosov
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Arkhangelsk
A. Sinitsyn
Federal Research Centre “Fundamentals of Biotechnology”, Russian Academy of Sciences; Chemical Department, Lomonosov Moscow State University
Email: a.s.aksenov@narfu.ru
俄罗斯联邦, Moscow; Moscow
参考
- Braghiroli F.L., Passarini L. // Current Forestry Reports. 2020. V. 6. P. 172–183. https://doi.org/10.1007/s40725-020-00112-9
- Gonçalves M.C.P., Romanelli J.P., Cansian A.B.M., Pucci E.F.Q., Guimaraes J.R., Tardioli P.W., Saville B.A. // Ind. Crop. Prod. 2022. V. 186. 115213. https://doi.org/10.1016/j.indcrop.2022.115213
- Семёнова М.В., Гусаков А.В., Телицин В.Д., Синицын А. П. // Прикл. биохимия и микробиология. 2021. Т. 57. № 5. С. 477–484. https://doi.org/10.31857/S0555109921050147
- Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Прикл. биохимия и микробиология. 2020. Т. 56. № 6. С. 551–560. https://doi.org/10.31857/S0555109920060161
- Zhou B., Wang Y., Jiang Z., Salam A., Li K. // J. Wood Chem. Technol. 2021. V. 41. № 4. P. 150–159. https://doi.org/10.1080/02773813.2021.1938130
- Kumar B., Verma P. // Fuel. 2021. V. 288. 119622. https://doi.org/10.1016/j.fuel.2020.119622
- Rabinovich M. L. // Cell. Chem. Tech. 2010. V. 44. № 4. P. 173–186.
- Alvira P., Tomás-Pejó E., Ballesteros M., Negro M.J. // Biores. Technol. 2010. V. 101. № 13. P. 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
- Zhu J.Y., Pan X.J. // Biores. Tech. 2010. V. 101. № 13. P. 4992–5002. https://doi.org/10.1016/j.biortech.2009.11.007
- Hendriks A.T.W.M., Zeeman G. // Biores. Technol. 2009. V. 100. № 1. P. 10–18. https://doi.org/10.1016/j.biortech.2008.05.027
- Kucharska K., Rybarczyk P., Hołowacz I., Łukajtis R., Glinka M., Kamiński M. // Molecules. 2018. V. 23. № 11. 2937. https://doi.org/10.3390/molecules23112937
- Asada C., Sasaki C., Uto Y., Sakafuji J., Nakamura Y. // Biochem. Eng. J. 2012. V. 60. P. 25–29. https://doi.org/10.1016/j.bej.2011.09.013
- Pielhop T., Amgarten J., von Rohr P.R., Studer M.H. // Biotech. Biofuels. 2016. V. 9. № 1. P. 1–13. https://doi.org/10.1186/s13068-016-0567-1
- Doménech P., Manzanares P., Álvarez C., Ballesteros M., Duque A. // Holzforschung. 2020. V. 75. № 3. P. 250–259. https://doi.org/10.1515/hf-2020-0068
- Vaidya A.A., Murton K.D., Smith D.A., Dedual G. // Biomass conv. Bioref. 2022. V. 12. № 11. P. 5427–5442. https://doi.org/10.1007/s13399-022-02373-9
- Xu X., Wang K., Zhou Y., Lai C., Zhang D., Xia C., Pugazhendhi A. // Fuel. 2023. V. 338. Р. 127361. https://dx.doi.org/10.1016/j.fuel.2022.127361
- Zhao X., Zhan Y., Han L., Sun X., Zhang T., Zhao Z. // Processes. 2023. V. 11. № 4. P. 1293. https://doi.org/10.3390/pr11041293
- Yin X., Wei L., Pan X., Liu C., Jiang J., Wan. K. // Front. Plant Sci. 2021. V. 12. 670061. https://doi.org/10.3389/fpls.2021.670061
- Moniruzzaman M., Goto, M. // Appl. Ionic liq. Biotech. 2019. P. 61–77. https://doi.org/10.1007/10_2018_64
- Wu W., Li P., Huang L., Wei Y., Li J., Zhang L., Jin Y. // Biomass. 2023. V. 3. № 1. P. 96–107. https://doi.org/10.3390/biomass3010007
- Przybysz Buzała K., Kalinowska H., Małachowska E., Boruszewski P., Krajewski K., Przybysz P. // Energies. 2019. V. 12. № 15. 2952. https://doi.org/10.3390/en12152952
- Cai C., Zhang C., Li N., Liu H., Xie J., Lou H., Pan X., Zhu J. Y., Wang F. // Renew. Sust. En. Rev. 2023. V. 183. 113445. https://doi.org/10.1016/j.rser.2023.113445
- Van Wyk J.P.H. // Biomass Bioen. 1999. V. 16. № 3. P. 239–242.
- Jin Y., Jameel H., Chang H. M., Phillips R. // J. Wood Chem. Tech. 2010. V. 30. № 1. P. 86–104. https://dx.doi.org/10.1080/02773810903578360
- Buzała K., Przybysz P., Rosicka-Kaczmarek J., Kalinowska H. // Cellulose. 2015. V. 22. P. 663–674. https://doi.org/10.1007/s10570-014-0522-x
- Доценко Г.С., Чекушина А.В., Кондратьева Е.Г., Правильников А.Г., Андрианов Р.М., Осипов Д.О. и др. // Лес. Вест. 2012. Т. 8. № 91. С. 129–135.
- Синицын А.П., Синицына О.А., Зоров И.Н., Рожкова А.М. // Вестн. Моск. ун-та. Сер. 2. Химия. 2023. Т. 64. № 4. С. 312–333. https://doi.org/10.55959/MSU0579-9384-2-2023-64-4312-333
- Новожилов Е.В., Аксенов А.С., Демидов М.Л., Чухчин Д.Г., Доценко Г.С., Осипов, Д.О., Синицын А.П. // Кат. Пром. 2014. Т. 4. С. 74–80. https://dx.doi.org/10.1134/S2070050414040138
- Новожилов Е.В., Синельников И.Г., Аксенов А.С., Чухчин Д.Г., Тышкунова И.В., Рожкова А.М. и др.// Кат. Пром. 2015. Т. 5. С. 78–83. https://doi.org/10.18412/1816-0387-2015-5-78-83
- Aksenov A.S., Tyshkunova I.V., Poshina D.N., Guryanova A.A., Chukhchin D.G., Sinelnikov I.G. et. al. // Catalysts. 2020. V. 10. 536. https://doi.org/10.3390/catal10050536
- Shevchenko A.R., Mayorova K.A., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. еt al // Fermentation. 2023. V. 9. 936. https://doi.org/10.3390/fermentation9110936
- Saini J.K., Patel A.K., Adsul M., Singhania R.R. // Renewable Energy. 2016. V. 98. P. 29–42. https://dx.doi.org/10.1016/j.renene.2016.03.089
- Cai C., Li J., Hirth K., Huber G. W., Lou H., Zhu J. Y. // ChemSusChem. 2020. V. 13. P. 4649–4659. https://doi.org/10.1002/cssc.202001120
- Brondi M.G., Elias A. M., Furlan F.F., Giordano R.C., Farinas C.S. // Sci. Rep. 2020. V. 10. 7367. https://doi.org/10.1038/s41598-020-64316-6
- Aldaeus F., Larsson K., Srndovic J. S., Kubat M., Karlström K., Peciulyte A., Olsson L., Larsson, P. T. // Cellulose. 2015. V. 22. P. 3991–4002. https://doi.org/10.1007/s10570-015-0766-0
- Huang C., Li R., Tang W., Zheng Y., Meng, X. // Fermentation. 2022. V. 8, 558. https://doi.org/10.3390/fermentation8100558
- Wang Z.J., Lan T.Q., Zhu J.Y. // Biotech. Biofuels. 2013. V. 6. 9. https://doi.org/10.1186/1754-6834-6-9
- Willför S., Pranovich A., Tamminen T., Puls J., Laine C., Suurnäkki A., Saake B., Uotila K., Simolin H., Hemming J., Holmbom B. // Ind. Crops Prod. 2009. V. 29. P. 571–580. https://doi.org/10.1016/j.indcrop.2008.11.003
- Ghose T.K. // Pure Appl. Chem. 1987. V. 59, P. 257–268. https://doi.org/10.1351/pac198759020257
- Nelson, N. // J. Biol. Chem. 1944. V. 153. № 2. P. 375–380. https://doi.org/10.1016/S0021-9258(18)71980-7
- Lowry O.H., Roseborough N.J., Farr A.L., Randall R.J. // J. Biol. Chem. 1951. V. 193. P. 265–275. https://dx.doi.org/10.1016/S0021–9258(19)52451–6
- Mosier N., Wyman C., Dale B., Elander R., Lee Y.Y., Holtzapple M., Ladisch M. // Biores. Technol. 2005. V. 96. № 6. P. 673–686. https://doi.org/10.1016/j.biortech.2004.06.025
- Sun S., Sun S., Cao X., Sun R. // Biores. Technol. 2016. V. 199. P. 49–58. https://doi.org/10.1016/j.biortech.2015.08.061
- Холькин Ю.И. Технология гидролизных производств. М.: Лесная промышленность, 1989. 496 с.
- Ek M.; Gellerstedt G., Henriksson G. Pulping Chemistry and Technology. / Eds. M. Ek, G. Gellerstedt, G.r Henriksson. Berlin: Walter de Gruyter GmbH, 2009. V. 2. 471 p.
- Мингазова Л.А., Канарский А. В., Крякунова Е.В., Канарская З.А. // Лесн. Журн. 2020. Т. 2. № 374. С. 146–158. https://doi.org/10.37482/0536-1036-2020-2-146-158
- Новожилов Е.В. // Лесн. Журн. 1999. Т. 2. № 3. С. 180–188.
- Ko C.H., Chen F.J., Lee J.J., Tzou D.L.M. // Cellulose. 2011. V. 18. P. 1043–1054. https://doi.org/10.1007/s10570-011-9534-y
- Laivins, G.V., Scallan, A.M. // Prod. Paper. 1993. V. 2. P. 1235–1260. https://doi.org/10.15376/frc.1993.2.1235
- Rebuzzi, F., Evtuguin, D.V. // Macromol. Symposia. 2005. V. 232. № 1. P. 121–128. https://doi.org/10.1002/masy.200551414
- Kamaya Y. // J. Ferm. Bioeng. 1996. V. 82. P. 549–553. https://doi.org/10.1016/S0922-338X(97)81250-0
- Garcia-Ubasart J., Torres A.L., Vila C., Pastor F.I.J., Vidal T. // Ind. Crop. Prod. 2013. V. 44. P. 71–76. https://doi.org/10.1016/j.indcrop.2012.10.019
- Shevchenko A.R., Tyshkunova I.V., Chukhchin D.G., Malkov A.V., Toptunov E.A., Telitsin V.D. et al. // Catalysts. 2023. V. 13. № 1. 103. https://doi.org/10.3390/catal13010103
- Mayorova K., Aksenov A., Shevchenko A. // AIP Conf. Proc. 2023. V. 2931, P. 030005-1-030005-8 https://doi.org/10.1063/5.0178421
补充文件
