Dose-dependent Effects of Azospirilla Lectin on the Growth of wheat Seedlings under Salt Stress

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The dose-dependent effect of the A. brasilense Sp7 lectin on the roots of 4-day-old wheat seedlings (Triticum aestivum L. cv. Saratovskaya 29) grown under simulated salt stress was studied. In the roots of wheat seedlings under salt stress, lectin increased the activity of peroxidase and superoxide dismutase, but decreased the activity of catalase. In the roots of stressed seedlings, lectin reduced the total protein content and lipid peroxidation causing membrane damage, but increased the content of secondary metabolites, such as the total amount of phenols and flavonoids. It was concluded that azospirillum lectins are involved in adaptive changes in the roots of wheat seedlings, due to which the relationship between bacteria and their hosts can be regulated when soil and climatic factors change.

Texto integral

Acesso é fechado

Sobre autores

S. Alen’kina

Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Autor responsável pela correspondência
Email: s.alenkina@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049

M. Кupryаshinа

Saratov Scientific Centre of the Russian Academy of Sciences (IBPPM RAS)

Email: s.alenkina@yandex.ru

Institute of Biochemistry and Physiology of Plants and Microorganisms

Rússia, Saratov, 410049

Bibliografia

  1. Ashraf M., Ahmad S. // Field Crops Research. 2000. V. 66. P. 115–127.
  2. Munns R., Tester M. // Annual Review of Plant Biology. 2008. V. 59. P. 651–681.
  3. Dong H. Z., Kong X. Q., Luo Z., Li W. J., Xin C. S. // European Society for Agronomy. 2010. V. 33. P. 285–292.
  4. Silva P., Facanha A. R., Tavares R. M., Geros H. // Journal of Plant Growth Regulation. 2010. V. 29. P. 23–34.
  5. Sun J., Wang M. J., Ding M. Q., Deng S. R., Liu M. Q., Lu C. F. et al. // Plant Cell and Environment. 2010. V. 33. P. 943–958.
  6. Meloni D. A., Oliva M. A., Martinez C. A., Cambraia J. // Environmental and Experimental Botany. 2003. V. 49. P. 69–76.
  7. Ashraf M. // Biotechnology Advances. 2009. V. 27. P. 84–93.
  8. Velarde-Buendıa A. M., Shabala S., Cvikrova M., Oxana D., Pottosin I. // Plant Physiology and Biochemistry. 2012. V. 61. P. 18–23.
  9. Horvath E., Pal M., Szalai G., Paldi E., Janda T. // Biologia Plantarum. 2007. V. 5. P. 1480–1487.
  10. Georgiadou E.C., Ntourou T., Goulas V., Manganaris G. A., Kalaitzis P., Fotopoulos V. // Front. Plant Sci. 2015. V. 6. P. 871.
  11. Es-Safi N. E., Kollmann I., Khlifi S., Ducrot P. H. // Food Sci. Technol. 2007. V. 40. P. 1246–1252.
  12. Verma S., Mishra S. N. // Journal of Plant Physiology. 2005. V. 162. P. 669–677.
  13. Puente M. L., Gualpa G. L., Lopez G. A., Molina R. M., Carletti S. M., Cassán F. D. // Symbiosis. 2018. V. 76. P. 41–49.
  14. Bhattacharyya P. N., Jha D. K. // World J. Microbiol. Biotechnol. 2012. V. 28. P. 1327–1350.
  15. Cassána F., Diaz-Zorita M. // Soil Biology and Biochemistry. 2016. V. 103. P. 117–130.
  16. Антонюк Л. П., Евсеева Н. В. // Микробиология. 2006. Т. 75. № 4. С. 544–549.
  17. Castellanos T., Ascencio F., Bashan Y. // Current Microbiology. 1998. V. 36. P. 241–244.
  18. Никитина В. Е., Пономарева Е. Г., Аленькина С. А. Молекулярные основы взаимоотношений ассоциативных микроорганизмов с растениями. / Ред. В. В. Игнатов. М.: Наука, 2005. С. 70–97.
  19. Alen’kina S. A., Bogatyrev V. A., Matora L. Yu., Sokolova M. K., Chernysheva M. P., Trutneva K. A., Nikitina V. E. // Plant Soil. 2014. V. 381. P. 337–349.
  20. Alen’kina S. А., Romanov N. I., Nikitina V. Е. // Brazilian Journal of Botany 2018. V. 41. P. 579–587.
  21. Alen’kina S. А., Nikitina V. Е. // Appl. Biochem. Microbiol. 2020. V. 56. P. 211–218.
  22. Alen’kina S. А. Nikitina V. Е. // Russian Journal of Plant Physiology. 2021. V. 68. P. 315–321.
  23. Хайруллин Р. M, Яруллина Л. Г., Трошина Н. Б., Ахметова И. Э. // Биохимия. 2001. Т. 66. № 3. С. 354–358.
  24. Aebi H. Catalase in Vitro. / Ed. L. Packer. Methods in Enzymology. San Diego: Acad. Press, 1984. P. 121–126.
  25. Alscher R.G., Erturk N., Heath L. S. // J. Exp. Bot. 2002. V. 53. P. 1331–1341.
  26. Makkar H. P. S., Sidhuraju P., Becker K. Plant Secondary Metabolites. Totowa: Humana Press, 2007. 496 p.
  27. Marinova D., Ribarova F., Atanassova M. // Journal of the University of Chemical Technology and Metallurgy. 2005. V. 40. № 3. P. 255–260.
  28. Wu H. L., Wu X. L., Li Z. H., Duan L. S., Zhang M. C. // Journal of Plant Growth Regulation. 2012. V. 31. P. 113–123.
  29. Alen’kina S. A., Payusova O. A., Nikitina V. E. // Plant Soil. 2006. V. 283. P. 147–151.
  30. Чернышева М. П., Аленькина С. А., Никитина В. Е., Игнатов В. В. // Прикл. биохимия и микробиология. 2005. Т. 41. № 4. С. 444–448.
  31. Аленькина С. А., Никитина В. Е. // Микробиология. 2015. Т. 84. № 5. С. 553–560.
  32. Alen’kina S. А., Nikitina V. Е. // J. Plant Regul. 2017. V. 36. P. 522–527.
  33. Alen’kina S., Kupryashina M. // Soil Research. 2022. V. 60. P. 197–209.
  34. Orcutt D. M., Nilsen E. T. The Physiology of Plants Under Stress: Soil and Biotic Factors. N.Y.: Wiley, 2000. 696 p.
  35. Foyer C. H., Noctor G. // Plant, Cell and Environment. 2015. V. 38. P. 239–239.
  36. Reddy A. R., Chaitanya K. V., Jutur P. P., Sumithra K. // Environmental and Experimental Botany. 2004. V. 52. P. 33–42.
  37. Arzanesh M. H., Alikhani H. A., Khavazi K., Rahimian H. A., Miransari M. // International Journal of Botany. 2009. V. 5. P. 244–249.
  38. Аленькина С. А., Трутнева К. А., Никитина В. Е. // Известия РАН. Серия биологическая. 2013. № 6. С. 760–764.
  39. Cramer G. R., Van Sluyter S. C., Hopper D. W. et al. //BMC Plant Biol. 2013. V. 13. P. 49.
  40. Darko E., Fodor J., Dulai S., Ambrus H., Szenzenstein A., Kiraly Z., Barnabas B. // Journal of Agronomy and Crop Science. 2011. V. 197. P. 454–465.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Effect of lectin (2–5) A. brasilense Sp7 on the content of MDA (a), PS (b) and flavonoids (c) in the roots of wheat seedlings under salinity: 1 – control, without lectin; 2 – 0.1 mM; 3 – 0.3 mM; 4 – 0.6 mM; 5 – 1.2 mM. The results are presented as arithmetic means with standard error. Different letters indicate significantly different values ​​(P < 0.05).

Baixar (216KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024