Comparison of Biochemical Properties of Recombinant Alpaca (Vicugna pacos) Chymosins Produced in Pro- and Eukaryotic Expression Systems

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the yeast Kluyveromyces lactis, a strain-producer of recombinant alpaca prochymosin (Vicugna pacos) was developed. A comparative analysis of the biochemical properties of recombinant alpaca chymosin obtained in the expression systems of K. lactis and Escherichia coli was carried out. It was found that the recombinant alpaca chymosin synthesized in K. lactis exceeds the analog obtained in E. coli by 12.9 times in the number of enzyme turnovers, and by 2.9 times in catalytic efficiency. Compared to chymosin expressed in E. coli, the enzyme obtained in a eukaryotic producer has a thermal stability threshold increased by 5°C. Replacing a prokaryotic producer with a eukaryotic one enhances the negative sensitivity of the milk-clotting activity of recombinant alpaca chymosin to an increase in substrate pH in the range of 6.1–6.9, which is accompanied by an increase in the duration of coagulation by 8–35%. With an increase in the concentration of CaCl2 in the substrate, the coagulation activity of the target enzyme synthesized in E. coli was 12–14% higher than that of its analogue obtained in K. lactis.

Sobre autores

S. Belenkaya

State Research Center of Virology and Biotechnology “Vector”; Novosibirsk State University

Email: dnshcherbakov@gmail.com
Russia, 630559, Novosibirsk Region, Koltsovo; Russia, 630090, Novosibirsk

V. Elchaninov

Federal Altai Scientific Center for Agrobiotechnologies,
Siberian Research Institute of Cheese Making

Email: dnshcherbakov@gmail.com
Russia, 656910, Barnaul-51

V. Chirkova

Altai State University

Email: dnshcherbakov@gmail.com
Russia, 656049, Barnaul

D. Shcherbakov

State Research Center of Virology and Biotechnology “Vector”; Altai State University

Autor responsável pela correspondência
Email: dnshcherbakov@gmail.com
Russia, 630559, Novosibirsk Region, Koltsovo; Russia, 656049, Barnaul

Bibliografia

  1. Belenkaya S.V., Balabova D.V., Belov A.N, Koval A.D., Shcherbakov D.N., Elchaninov V.V. // Appl. Biochem. Microbiol. 2020. V. 56. № 4. P. 363–372.
  2. Ельчанинов В.В. Проблема поиска новых молокосвертывающих ферментов для сыроделия: критерии выбора источников генов для получения рекомбинантных химозинов. Барнаул: Изд. Алтайского гос. ун-та, 2021. 170 с.
  3. Ma X., Yao B., Zheng W., Li L. // J. Microbiol. Biotechnol. 2020. V. 20. № 3. P. 550–557.
  4. Dajani R., Sharp S., Graham S., Bethell S.S., Cooke R.M., Jamieson D.J., Coughtrie M.W. // Protein Expr. Purif. 1999. V. 16. №1. P. 11–18.
  5. Pal Roy M., Mazumdar D., Dutta S., Saha S.P., Ghosh S. // PloS one. 2016. V. 11. № 1. P. e0145745.
  6. Lawton M.P., Philpot R.M. // J. Biol. Chem. 1993. V. 268. № 8. P. 5728–5734.
  7. Stone M.J., Ruf W., Miles D.J., Edgington T.S., Wright P.E. // Biochem. J. 1995. V. 310. № 2. P. 605–614.
  8. Wang P., Zhang J., Sun Z., Chen Y., Gurewich V., Liu J.N. // Thromb. Res. 2000. V. 100. № 5. P. 461–467.
  9. Sauerzapfe B., Engels L., Elling L. // Enzyme Microb. Technol. 2008. V. 43. № 3. P. 289–296.
  10. Belenkaya S.V., Elchaninov V.V., Shcherbakov D.N. // Biotekhnologiya. 2021. V. 37. № 5. P. 20–27.
  11. Рудометов А.П., Беленькая С.В., Щербаков Д.Н., Балабова Д.В., Кригер А.В., Ельчанинов В.В. // Сыроделие и маслоделие. 2017. Т. 6. С. 40–43.
  12. Belenkaya S.V., Rudometov A.P., Shcherbakov D.N., Balabova D.V., Kriger A.V., Belov A.N., Koval A.D., Elchaninov V.V. // Appl. Biochem. Microbiol. 2018. V. 54. № 6. P. 569–576.
  13. Belenkaya S.V., Shcherbakov D.N., Balabova D.V., Belov A.N., Koval A.D., Elchaninov V.V. // Appl. Biochem. Microbiol. 2020. V. 56. № 6. P. 647–656.
  14. Belenkaya S.V., Bondar A.A., Kurgina T.A., Elchaninov V.V., Bakulina A.Yu., Rukhlova E.A., Lavrik O.I., Ilyichev A.A., Shcherbakov D.N. // Biochemistry (Moscow). 2020. V. 85. № 7. P. 781–791.
  15. Kappeler S.R., van den Brink H.(J.)M., Rahbek-Nielsen H., Farah Z., Puhan Z., Hansen E.B., Johansen E. // Biochem. Biophys. Res. Comm. 2006. V. 342. № 2. P. 647–654.
  16. Zhang Y., Li H., Wu H., Don Y., Liu N., Yang K. // Biochim. Biophys. Acta (BBA). 1997. V. 1343. № 2. P. 278–286.
  17. Jensen J.L., Molgaard A., Poulsen J.-C.N., Harboe M.K., Simonsen J.B., Lorentzen A.M., Hjerno K., van den Brink J.M., Qvist K.B., Larsen S. // Acta Cryst. (Section D, Biol. Crystallogr.). 2013. V. 69. № 5. P. 901–913.
  18. Horne D.S. // Curr. Opin. Coll. Interface Sci. 2002. V. 7. P. 456–461.
  19. Horne D.S. // Int. Dairy J. 1998. V. 8. P. 171–177.
  20. Lucey J.A. // J. Dairy Sci. 2002. V. 85. № 2. P. 281–294.
  21. Spohner S.C., Schaum V., Quitmann H., Czermak P. // J. Biotechnol. 2016. V. 222. P. 104–116.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (496KB)
3.

Baixar (81KB)
4.

Baixar (73KB)
5.

Baixar (82KB)

Declaração de direitos autorais © С.В. Беленькая, В.В. Ельчанинов, В.Ю. Чиркова, Д.Н. Щербаков, 2023